639 research outputs found
A New Method for Measuring Neutron-skin Thickness by Exciting the Anti-analog Giant Dipole Resonance
A tüdőrák molekuláris diagnosztikája
Development of the target therapies of lung cancer was a rapid process which fundamentally changed the pathological diagnosis as well. Furthermore, molecular pathology became essential part of the routine diagnostics of lung cancer. These changes generated several practical problems and in underdeveloped countries or in those with reimbursement problems have been combined with further challenges. The central and eastern region of Europe are characterized by similar problems in this respect which promoted the foundation of NSCLC Working Group to provide up to date protocols or guidelines. This present paper is a summary of the molecular pathology and target therapy guidelines written with the notion that it has to be upgraded continuously according to the development of the field
Relative spins and excitation energies of superdeformed bands in 190Hg: Further evidence for octupole vibration
An experiment using the Eurogam Phase II gamma-ray spectrometer confirms the
existence of an excited superdeformed (SD) band in 190Hg and its very unusual
decay into the lowest SD band over 3-4 transitions. The energies and dipole
character of the transitions linking the two SD bands have been firmly
established. Comparisons with RPA calculations indicate that the excited SD
band can be interpreted as an octupole-vibrational structure.Comment: 12 pages, latex, 4 figures available via WWW at
http://www.phy.anl.gov/bgo/bc/hg190_nucl_ex.htm
Using EMA to benchmark environmental costs – theory and experience from four countries through the UNIDO TEST project
Cutting-Edge Analysis of Extracellular Microparticles using ImageStream(X) Imaging Flow Cytometry
Strategies to inhibit tumour associated integrin receptors: rationale for dual and multi-antagonists
YesThe integrins are a family of 24 heterodimeric transmembrane cell surface receptors. Involvement in cell attachment to the extracellular matrix, motility, and proliferation identifies integrins as therapeutic targets in cancer and associated conditions; thrombosis, angiogenesis and osteoporosis. The most reported strategy for drug development is synthesis of an agent that is highly selective for a single integrin receptor. However, the ability of cancer cells to change their integrin repertoire in response to drug treatment renders this approach vulnerable to the development of resistance and paradoxical promotion of tumor growth. Here, we review progress towards development of antagonists targeting two or more members of the RGD-binding integrins, notably αvβ3, αvβ5, αvβ6, αvβ8, α5β1, and αIIbβ3, as anticancer therapeutics
Nuclear astrophysics with radioactive ions at FAIR
The nucleosynthesis of elements beyond iron is dominated by neutron captures in the s and r processes. However, 32 stable, proton-rich isotopes cannot be formed during those processes, because they are shielded from the s-process flow and r-process, β-decay chains. These nuclei are attributed to the p and rp process. For all those processes, current research in nuclear astrophysics addresses the need for more precise reaction data involving radioactive isotopes. Depending on the particular reaction, direct or inverse kinematics, forward or time-reversed direction are investigated to determine or at least to constrain the desired reaction cross sections. The Facility for Antiproton and Ion Research (FAIR) will offer unique, unprecedented opportunities to investigate many of the important reactions. The high yield of radioactive isotopes, even far away from the valley of stability, allows the investigation of isotopes involved in processes as exotic as the r or rp processes
Extended Thromboprophylaxis with Betrixaban in Acutely Ill Medical Patients
Background
Patients with acute medical illnesses are at prolonged risk for venous thrombosis. However, the appropriate duration of thromboprophylaxis remains unknown.
Methods
Patients who were hospitalized for acute medical illnesses were randomly assigned to receive subcutaneous enoxaparin (at a dose of 40 mg once daily) for 10±4 days plus oral betrixaban placebo for 35 to 42 days or subcutaneous enoxaparin placebo for 10±4 days plus oral betrixaban (at a dose of 80 mg once daily) for 35 to 42 days. We performed sequential analyses in three prespecified, progressively inclusive cohorts: patients with an elevated d-dimer level (cohort 1), patients with an elevated d-dimer level or an age of at least 75 years (cohort 2), and all the enrolled patients (overall population cohort). The statistical analysis plan specified that if the between-group difference in any analysis in this sequence was not significant, the other analyses would be considered exploratory. The primary efficacy outcome was a composite of asymptomatic proximal deep-vein thrombosis and symptomatic venous thromboembolism. The principal safety outcome was major bleeding.
Results
A total of 7513 patients underwent randomization. In cohort 1, the primary efficacy outcome occurred in 6.9% of patients receiving betrixaban and 8.5% receiving enoxaparin (relative risk in the betrixaban group, 0.81; 95% confidence interval [CI], 0.65 to 1.00; P=0.054). The rates were 5.6% and 7.1%, respectively (relative risk, 0.80; 95% CI, 0.66 to 0.98; P=0.03) in cohort 2 and 5.3% and 7.0% (relative risk, 0.76; 95% CI, 0.63 to 0.92; P=0.006) in the overall population. (The last two analyses were considered to be exploratory owing to the result in cohort 1.) In the overall population, major bleeding occurred in 0.7% of the betrixaban group and 0.6% of the enoxaparin group (relative risk, 1.19; 95% CI, 0.67 to 2.12; P=0.55).
Conclusions
Among acutely ill medical patients with an elevated d-dimer level, there was no significant difference between extended-duration betrixaban and a standard regimen of enoxaparin in the prespecified primary efficacy outcome. However, prespecified exploratory analyses provided evidence suggesting a benefit for betrixaban in the two larger cohorts. (Funded by Portola Pharmaceuticals; APEX ClinicalTrials.gov number, NCT01583218. opens in new tab.
Fundamental investigations of natural and laboratory generated SAR dose response curves for quartz OSL in the high dose range
A neutron spectrometer for studying giant resonances with (p,n) reactions in inverse kinematics
A neutron spectrometer, the European Low-Energy Neutron Spectrometer (ELENS), has been constructed to study exotic nuclei in inverse-kinematics experiments. The spectrometer, which consists of plastic scintillator bars, can be operated in the neutron energy range of 100 keV-10 MeV. The neutron energy is determined using the time-of-flight technique, while the position of the neutron detection is deduced from the time-difference information from photomultipliers attached to both ends of each bar. A novel wrapping method has been developed for the plastic scintillators. The array has a larger than 25% detection efficiency for neutrons of approximately 500 keV in kinetic energy and an angular resolution of less than 1 degrees. Details of the design, construction and experimental tests of the spectrometer will be presented. (C) 2013 Elsevier B.V. All rights reserved.</p
- …
