1,795 research outputs found

    Optimizing an array of antennas for cellular coverage from a high altitude platform

    Get PDF
    In a wireless communications network served by a high altitude platform (HAP) the cochannel interference is a function of the antenna beamwidth, angular separation and. sidelobe level. At the millimeter wave frequencies proposed for HAPs, an array of aperture type antennas on the platform is a practicable solution for serving the cells. We present a method for predicting cochannel interference based on curve-fit approximations for radiation patterns of elliptic beams which illuminate cell edges with optimum power, and a means of estimating optimum beamwidths for each cell of a regular hexagonal layout. The method is then applied to a 121 cell architecture. Where sidelobes are modeled As a flat floor at 40-dB below peak directivity, a cell cluster size of four yields carrier-to-interference ratios (CIRs), which vary from 15 dB at cell edges to 27 dB at cell centers. On adopting a cluster size of seven, these figures increase, respectively, to 19 and 30 dB. On reducing the sidelobe level, the. improvement in CIR can be quantified. The method also readily allows for regions of overlapping channel coverage to be shown

    Frequency estimation in multipath rayleigh-sparse-fading channels

    Get PDF
    Maximum-likelihood (ML) data-aided frequency estimation in multipath Rayleigh-fading channels with sparse impulse responses is investigated. We solve this problem under the assumption that the autocorrelation matrix of the pilot signal can be approximated by a diagonal matrix, the fading of different path amplitudes are independent from each other, and the additive noise is white and Gaussian. The ML frequency estimator is shown to be based on combining nonlinearly transformed path periodograms. We have derived the nonlinear function for the two cases: known and unknown fading variances. The new frequency estimators lead, in particular cases, to known ML frequency estimators for nonsparse multipath fading channels. The use of a priori information about the mean number of paths in the channel allows a significant improvement of the accuracy performance. Exploiting the sparseness of the channel impulse response is shown to significantly reduce the threshold signal-to-noise ratio at which the frequency error departs from the Cramer-Rao lower bound. However, precise knowledge of the channel sparseness is not required in order to realize this improvement

    Modification of tumour blood flow using the hypertensive agent, angiotensin II

    Get PDF
    The effects of different doses of angiotensin II (0.02 to 0.5 microgram kg-1 min-1 on mean arterial blood pressure, tissue blood flow and tissue vascular resistance were investigated in BD9 rats. Blood flow was measured using the uptake of 125I- or 14C-labelled iodoantipyrine (125I-IAP and 14C-IAP). Spatial heterogeneity of blood flow within tumours, before and after angiotensin II infusion, was also measured using 14C-IAP and an autoradiographic procedure. Mean arterial blood pressure rose steeply with angiotensin II dose. Blood flow to skeletal muscle, skin overlying the tumour, contralateral skin, small intestine and kidney tended to decline in a dose-dependent manner. Blood flow to the tumour was also reduced (to 80% of control values) but there was no dose response. Blood flow to the heart was slightly increased and blood flow to the brain was unaffected by angiotensin II. Vascular resistance, in all tissues, was increased by angiotensin II infusion. The increase in tumour tissue was similar to that found in skeletal muscle and small intestine and is likely to be caused by a direct vasoconstricting effect of the drug rather than autoregulation of tumour blood flow in the face of an increase in perfusion pressure. The reduction in overall blood flow at the highest perfusion pressure was due to a preferential effect of angiotensin II at the tumour periphery. These results show that some tumours, at least, can respond directly to the effects of vasoactive agents

    Nonlocal effects in thin 4H-SiC UV avalanche photodiodes

    Get PDF
    The avalanche multiplication and excess noise characteristics of 4H-SiC avalanche photodiodes with i-region widths of 0.105 and 0.285 mum have been investigated using 230-365-nm light, while the responsivities of the photodiodes at unity gain were examined for wavelengths up to 375 nm. Peak unity gain responsivities of more than 130 mA/W at 265 nm, equivalent to quantum efficiencies of more than 60%, were obtained for both structures. The measured avalanche characteristics show, that beta > alpha and that the beta/alpha ratio remains large even in thin 4H-SiC avalanche regions. Very low excess noise, corresponding to k(eff) < 0.15 in the local noise model, where k(eff) = alpha/beta(beta/alpha) for hole (electron) injection, was measured with 365-nm light in both structures. Modeling the experimental results using a simple quantum efficiency model and a nonlocal description yields effective ionization threshold energies of 12 and 8 eV for electrons and holes, respectively, and suggests that the dead space in 4H-SiC is soft. Although dead space is important, pure hole injection is still required to ensure low excess noise in thin 4H-SiC APDs owing to beta/alpha ratios that remain large, even at very high fields

    Avalanche multiplication and breakdown in AlxGa1-xAs (x < 0-9)

    Get PDF
    Measurements carried out on thick Al/sub x/Ga/sub 1-x/As (x 0.63

    Excess noise characteristics of Al0.8Ga0.2As avalanche photodiodes

    Get PDF
    The avalanche noise characteristics of Al0.8Ga0.2 As have been measured in a range of p-i-n and n-i-p diodes with i-region widths ω varying from 1.02 to 0.02 μm. While thick bulk diodes exhibit low excess noise from electron initiated multiplication, owing to the large α/β ratio (1/k), the excess noise of diodes with ω < 0.31 μm were found to be greatly reduced by the effects of dead space. The thinnest diodes exhibit very low excess noise, corresponding to k = 0.08, up to a multiplication value of 90. In contrast to most III-V materials, it was found that both thick and thin Al0.8Ga0.2As multiplication layers can give very low excess noise and that electrons must initiate multiplication to minimize excess noise, even in thin structure

    Is FiLaC the answer for more complex perianal fistula?

    Get PDF

    High resolution miniature dilatometer based on AFM piezocantilever

    Full text link
    Thermal expansion, or dilation, is closely related to the specific heat, and provides useful information regarding material properties. The accurate measurement of dilation in confined spaces coupled with other limiting experimental environments such as low temperatures and rapidly changing high magnetic fields requires a new sensitive millimeter size dilatometer that has little or no temperature and field dependence. We have designed an ultra compact dilatometer using an atomic force microscope (AFM) piezoresistive cantilever as the sensing element and demonstrated its versatility by studying the charge density waves (CDWs) in alpha uranium to high magnetic fields (up to 31 T). The performance of this piezoresistive dilatometer was comparable to that of a titanium capacitive dilatometer.Comment: 9 pages, 3 figures, submitted to Review of Scientific Instrument

    Magnetic field induced lattice anomaly inside the superconducting state of CeCoIn5_5: evidence of the proposed Fulde-Ferrell-Larkin-Ovchinnikov state

    Full text link
    We report high magnetic field linear magnetostriction experiments on CeCoIn5_5 single crystals. Two features are remarkable: (i) a sharp discontinuity in all the crystallographic axes associated with the upper superconducting critical field Bc2B_{c2} that becomes less pronounced as the temperature increases; (ii) a distinctive second order-like feature observed only along the c-axis in the high field (10 T BBc2 \lesssim B \leq B_{c2}) low temperature (TT \lesssim 0.35 K) region. This second order transition is observed only when the magnetic field lies within 20o^o of the ab-planes and there is no signature of it above Bc2B_{c2}, which raises questions regarding its interpretation as a field induced magnetically ordered phase. Good agreement with previous results suggests that this anomaly is related to the transition to the Fulde-Ferrel-Larkin-Ovchinnikov superconducting state.Comment: 3 figures, 5 page
    corecore