80 research outputs found
Genome wide analysis of gene expression changes in skin from patients with type 2 diabetes
Non-healing chronic ulcers are a serious complication of diabetes and are a major healthcare problem. While a host of treatments have been explored to heal or prevent these ulcers from forming, these treatments have not been found to be consistently effective in clinical trials. An understanding of the changes in gene expression in the skin of diabetic patients may provide insight into the processes and mechanisms that precede the formation of non-healing ulcers. In this study, we investigated genome wide changes in gene expression in skin between patients with type 2 diabetes and non-diabetic patients using next generation sequencing. We compared the gene expression in skin samples taken from 27 patients (13 with type 2 diabetes and 14 non-diabetic). This information may be useful in identifying the causal factors and potential therapeutic targets for the prevention and treatment of diabetic related diseases
Stressful conditions reveal decrease in size, modification of shape but relatively stable asymmetry in bumblebee wings
Human activities can generate a wide variety of direct and indirect effects on animals, which can manifest as environmental and genetic stressors. Several phenotypic markers have been proposed as indicators of these stressful conditions but have displayed contrasting results, depending, among others, on the phenotypic trait measured. Knowing the worldwide decline of multiple bumblebee species, it is important to understand these stressors and link them with the drivers of decline. We assessed the impact of several stressors (i.e. natural toxin-, parasite-, thermic- and inbreeding-stress) on both wing shape and size and their variability as well as their directional and fluctuating asymmetries. The total data set includes 650 individuals of Bombus terrestris (Hymenoptera: Apidae). Overall wing size and shape were affected by all the tested stressors. Except for the sinigrin (e.g. glucosinolate) stress, each stress implies a decrease of wing size. Size variance was affected by several stressors, contrary to shape variance that was affected by none of them. Although wing size directional and fluctuating asymmetries were significantly affected by sinigrin, parasites and high temperatures, neither directional nor fluctuating shape asymmetry was significantly affected by any tested stressor. Parasites and high temperatures led to the strongest phenotype modifications. Overall size and shape were the most sensitive morphological traits, which contrasts with the common view that fluctuating asymmetry is the major phenotypic marker of stress
Trees for bees: could woody plant pollen be used as a consistent resource in bee-focused agri-environment schemes?
peer reviewedBee populations have declined in many parts of the world, raising concerns over their conservation and the pollination services they provide. As a result of declines in agricultural areas, agri-environment schemes have been designed and implemented in order to reverse these trends. Until now, these schemes have largely focused on providing an abundance of herbaceous flowering plants which predominantly provide pollen and nectar during the summer, but flowering trees and shrubs may have been overlooked as a source of earlier-flowering resources. Using Bombus terrestris (L.) micro-colonies, we investigated differences in pollen quality from eight woody and six herbaceous plant species using composi-tional analyses and efficacy assays. Pollen from herbaceous plants had a higher average crude protein and lipid content, but there were no differences in the protein:lipid ratio when compared to woody plants. However, when measuring amino acids directly, woody plants had a slightly higher total and essential amino acid content. Despite these minor differences, micro-colonies fed on woody plant pollen produced a greater mass of larval offspring and had a lower rate of larval ejection. There was substantial variation between individual studied plant species, and whilst no individual woody plant pollen outper-formed the best herbaceous pollen, they all exceeded the performance of the worst herbaceous pollen. This consistent performance suggests that woody plants may be good candidates for inclusion in bee-focused agri-environment schemes in order to provide suitable pollen resources in the early part of the season.3922 - EOS-Michez - CliPS - Fédération Wallonie Bruxelles15. Life on land3. Good health and well-bein
Pollen protein: Lipid macronutrient ratios may guide broad patterns of bee species floral preferences
peer reviewe
DUX4c Is Up-Regulated in FSHD. It Induces the MYF5 Protein and Human Myoblast Proliferation
Facioscapulohumeral muscular dystrophy (FSHD) is a dominant disease linked to contractions of the D4Z4 repeat array in 4q35. We have previously identified a double homeobox gene (DUX4) within each D4Z4 unit that encodes a transcription factor expressed in FSHD but not control myoblasts. DUX4 and its target genes contribute to the global dysregulation of gene expression observed in FSHD. We have now characterized the homologous DUX4c gene mapped 42 kb centromeric of the D4Z4 repeat array. It encodes a 47-kDa protein with a double homeodomain identical to DUX4 but divergent in the carboxyl-terminal region. DUX4c was detected in primary myoblast extracts by Western blot with a specific antiserum, and was induced upon differentiation. The protein was increased about 2-fold in FSHD versus control myotubes but reached 2-10-fold induction in FSHD muscle biopsies. We have shown by Western blot and by a DNA-binding assay that DUX4c over-expression induced the MYF5 myogenic regulator and its DNA-binding activity. DUX4c might stabilize the MYF5 protein as we detected their interaction by co-immunoprecipitation. In keeping with the known role of Myf5 in myoblast accumulation during mouse muscle regeneration DUX4c over-expression activated proliferation of human primary myoblasts and inhibited their differentiation. Altogether, these results suggested that DUX4c could be involved in muscle regeneration and that changes in its expression could contribute to the FSHD pathology
Risks to pollinators and pollination from invasive alien species
Invasive alien species modify pollinator biodiversity and the services they provide that underpin ecosystem function and human well-being. Building on the Intergovernmental Science-Policy Platform for Biodiversity and Ecosystem Services (IPBES) global assessment of pollinators and pollination, we synthesize current understanding of invasive alien impacts on pollinators and pollination. Invasive alien species create risks and opportunities for pollinator nutrition, re-organize species interactions to affect native pollination and community stability, and spread and select for virulent diseases. Risks are complex but substantial, and depend greatly on the ecological function and evolutionary history of both the invader and the recipient ecosystem. We highlight evolutionary implications for pollination from invasive alien species, and identify future research directions, key messages and options for decision-making
Sensory perception and behaviour of insect pollinators under climate change
International audienc
Trees for bees: could woody plant pollen be used as a consistent resource in bee-focused agri-environment schemes?
- …
