53 research outputs found
The virulence factor p25 of beet necrotic yellow vein virus interacts with multiple Aux/IAA proteins from Beta vulgaris: Implications for rhizomania development
Rhizomania caused by Beet necrotic yellow vein virus (BNYVV) is characterized by excessive lateral root (LR) formation. Auxin-mediated degradation of Aux/IAA transcriptional repressors stimulates gene regulatory networks leading to LR organogenesis and involves several Aux/IAA proteins acting at distinctive stages of LR development. Previously, we showed that BNYVV p25 virulence factor interacts with BvIAA28, a transcriptional repressor acting at early stages of LR initiation. The evidence suggested that p25 inhibits BvIAA28 nuclear localization, thus, de-repressing transcriptional network leading to LR initiation. However, it was not clear whether p25 interacts with other Aux/IAA proteins. Here, by adopting bioinformatics, in vitro and in vivo protein interaction approaches we show that p25 interacts also with BvIAA2 and BvIAA6. Moreover, we confirmed that the BNYVV infection is, indeed, accompanied by an elevated auxin level in the infected LRs. Nevertheless, expression levels of BvIAA2 and BvIAA6 remained unchanged upon BNYVV infection. Mutational analysis indicated that interaction of p25 with either BvIAA2 or BvIAA6 requires full-length proteins as even single amino acid residue substitutions abolished the interactions. Compared to p25-BvIAA28 interaction that leads to redistribution of BvIAA28 into cytoplasm, both BvIAA2 and BvIAA6 remained confined into the nucleus regardless of the presence of p25 suggesting their stabilization though p25 interaction. Overexpression of p25-interacting partners (BvIAA2, BvIAA6 and BvIAA28) in Nicotiana benthamiana induced an auxin-insensitive phenotype characterized by plant dwarfism and dramatically reduced LR development. Thus, our work reveals a distinct class of transcriptional repressors targeted by p25
Production of a Beet chlorosis virus full-length cDNA clone by means of Gibson assembly and analysis of biological properties
Beet chlorosis virus (genus Polerovirus, family Luteoviridae), which is persistently transmitted by the aphid Myzus persicae, is part of virus yellows in sugar beet and causes interveinal yellowing as well as significant yield loss in Beta vulgaris. To allow reverse genetic studies and replace vector transmission, an infectious cDNA clone under cauliflower mosaic virus 35S control in a binary vector for agrobacterium-mediated infection was constructed using Gibson assembly. Following agroinoculation, the BChV full-length clone was able to induce a systemic infection of the cultivated B. vulgaris. The engineered virus was successfully aphid-transmitted when acquired from infected B. vulgaris and displayed the same host plant spectrum as wild-type virus. This new polerovirus infectious clone is a valuable tool to identify the viral determinants involved in host range and study BChV protein function, and can be used to screen sugar beet for BChV resistance
The complete genome sequence of the stolbur pathogen "Candidatus</Phytoplasma solani" from Pentastiridius leporinus
Occurrence of Fusarium spp. and mycotoxin accumulation in sugar beet under different storage conditions
The Virulence Factor p25 of Beet Necrotic Yellow Vein Virus Interacts With Multiple Aux/IAA Proteins From Beta vulgaris: Implications for Rhizomania Development
Rhizomania caused by Beet necrotic yellow vein virus (BNYVV) is characterized by excessive lateral root (LR) formation. Auxin-mediated degradation of Aux/IAA transcriptional repressors stimulates gene regulatory networks leading to LR organogenesis and involves several Aux/IAA proteins acting at distinctive stages of LR development. Previously, we showed that BNYVV p25 virulence factor interacts with BvIAA28, a transcriptional repressor acting at early stages of LR initiation. The evidence suggested that p25 inhibits BvIAA28 nuclear localization, thus, de-repressing transcriptional network leading to LR initiation. However, it was not clear whether p25 interacts with other Aux/IAA proteins. Here, by adopting bioinformatics, in vitro and in vivo protein interaction approaches we show that p25 interacts also with BvIAA2 and BvIAA6. Moreover, we confirmed that the BNYVV infection is, indeed, accompanied by an elevated auxin level in the infected LRs. Nevertheless, expression levels of BvIAA2 and BvIAA6 remained unchanged upon BNYVV infection. Mutational analysis indicated that interaction of p25 with either BvIAA2 or BvIAA6 requires full-length proteins as even single amino acid residue substitutions abolished the interactions. Compared to p25-BvIAA28 interaction that leads to redistribution of BvIAA28 into cytoplasm, both BvIAA2 and BvIAA6 remained confined into the nucleus regardless of the presence of p25 suggesting their stabilization though p25 interaction. Overexpression of p25-interacting partners (BvIAA2, BvIAA6 and BvIAA28) in Nicotiana benthamiana induced an auxin-insensitive phenotype characterized by plant dwarfism and dramatically reduced LR development. Thus, our work reveals a distinct class of transcriptional repressors targeted by p25
Bestimmung der Inokulumdichte von Isolaten des Beet necrotic yellow vein virus und Nachweis der variablen Pathogenität gegenüber verschiedenen Zuckerrübengenotypen – Resistenztest in natürlich infiziertem Boden versus Polymyxa betae Zoosporeninfektion
Entwicklung einer Methode zum Nachweis der Metamitron „target site“ Resistenz in Chenopodium album
ERYBET, UROBET & RAMUBET – forecasting models for the integrated control of diseases of sugar beet powdery mildew, rust and Ramularia
Testung der Resistenz in Zuckerrübensorten gegenüber Rhizoctonia solani, dem Erreger der Späten Rübenfäule, im Feld mittels künstlicher Inokulation
- …
