620 research outputs found
Diagnosis of weaknesses in modern error correction codes: a physics approach
One of the main obstacles to the wider use of the modern error-correction
codes is that, due to the complex behavior of their decoding algorithms, no
systematic method which would allow characterization of the Bit-Error-Rate
(BER) is known. This is especially true at the weak noise where many systems
operate and where coding performance is difficult to estimate because of the
diminishingly small number of errors. We show how the instanton method of
physics allows one to solve the problem of BER analysis in the weak noise range
by recasting it as a computationally tractable minimization problem.Comment: 9 pages, 8 figure
Debye relaxation in high magnetic fields
Dielectric relaxation is universal in characterizing polar liquids and
solids, insulators, and semiconductors, and the theoretical models are well
developed. However, in high magnetic fields, previously unknown aspects of
dielectric relaxation can be revealed and exploited. Here, we report low
temperature dielectric relaxation measurements in lightly doped silicon in high
dc magnetic fields B both parallel and perpendicular to the applied ac electric
field E. For B//E, we observe a temperature and magnetic field dependent
dielectric dispersion e(w)characteristic of conventional Debye relaxation where
the free carrier concentration is dependent on thermal dopant ionization,
magnetic freeze-out, and/or magnetic localization effects. However, for BperpE,
anomalous dispersion emerges in e(w) with increasing magnetic field. It is
shown that the Debye formalism can be simply extended by adding the Lorentz
force to describe the general response of a dielectric in crossed magnetic and
electric fields. Moreover, we predict and observe a new transverse dielectric
response EH perp B perp E not previously described in magneto-dielectric
measurements. The new formalism allows the determination of the mobility and
the ability to discriminate between magnetic localization/freeze out and
Lorentz force effects in the magneto-dielectric response.Comment: 19 pages, 6 figure
Forward with Active Clamp for space applications: clamp capacitor, dynamic specifications and EMI filter impact on the power stage design
The impact of the clamp capacitor design, the dynamic specifications and the EMI filter design on the power stage design of a 28V 50W Forward with Active Clamp converter for space applications is analyzed along this paper. Clamp capacitor is designed by considering the ECSS standards limitations for the semiconductors and saturation of the magnetic components, and considering the influence of the resonance between this capacitance and the magnetizing inductance on the input impedance of the converter. Dynamic specifications influence are analyzed. Additionally, the EMI filter design process is described. Singlestage and Multi-stage approaches are proposed. All these features make an increase of 2:4W losses and 1:6 higher area of the converter, compared with a preliminary design of the power stage, before considering these aspects
Facile synthesis of layered hexagonal MoS2
In this work synthesis of layered molybdenum sulphide (MoS2) through a temperature-controlled thermal evaporation approach is reported. Simultaneous co-evaporation of molybdenum trioxide (MoO3) and sulphur in an argon environment is employed. The as-deposited thin films are characterized by diffraction and microscopy
Atomically thin layers of MoS2 via a two step thermal evaporation-exfoliation method
Two dimensional molybdenum disulfide (MoS2) has recently become of interest to semiconductor and optic industries. However, the current methods for its synthesis require harsh environments that are not compatible with standard fabrication processes. We report on a facile synthesis method of layered MoS2 using a thermal evaporation technique, which requires modest conditions. In this process, a mixture of MoS2 and molybdenum dioxide (MoO2) is produced by evaporating sulfur powder and molybdenum trioxide (MoO3) nano-particles simultaneously. Further annealing in a sulfur-rich environment transforms majority of the excess MoO2 into layered MoS2. The deposited MoS2 is then mechanically exfoliated into minimum resolvable atomically thin layers, which are characterized using micro-Raman spectroscopy and atomic force microscopy. Furthermore Raman spectroscopy is employed to determine the effect of electrochemical lithium ion exposure on atomically thin layers of MoS2
Impact of land use on urban mobility patterns, emissions and air quality in a Portuguese medium-sized city
The main objective of this work was to evaluate the impact of urban development trends in mobility patterns of a medium sized Portuguese city and air quality consequences, using a sequential modeling process, comprising i) land use and transportation, TRANUS model; ii) road traffic air pollutants emissions, TREM model and; iii) air quality, TAPM model. This integrated methodology was applied to a medium sized Portuguese city. In order to evaluate the implementation of the methodology, a preliminary study was performed, which consisted on the comparison of modeled mobility patterns and CO and PM(10) concentrations with measured data used in the definition of the current scenario. The comparison between modeled and monitored mobility patterns at the morning peak hour for a weekday showed an RMSE of 31%. Regarding CO concentrations, an underestimation of the modeled results was observed. Nevertheless, the modeled PM(10) concentrations were consistent with the monitored data. Overall, the results showed a reasonable consistency of the modeled data, which allowed the use of the integrated modeling system for the study scenarios. The future scenarios consisted on the definition of different mobility patterns and vehicle technology characteristics, according to two main developing trends: (1) "car pooling" scenario, which imposes a mean occupancy rate of 3 passengers by vehicle and (2) the "Euro 6" scenario, which establishes that all vehicles accomplish at least the Euro 6 standard technology. Reductions of 54% and 83% for CO, 44% and 95% for PM(10), 44% and 87% for VOC and 44% and 79% for NO(x) emissions were observed in scenarios 1 and 2, respectively. Concerning air quality, a reduction of about 100 mug m(-3) of CO annual average concentration was observed in both scenarios. The results of PM(10) annual concentrations showed a reduction of 1.35 mug m(-3) and 2.7 mug m(-3) for scenarios 1 and 2 respectively
CO2 dissolution and design aspects of a multiorifice oscillatory baffled column
Dissolution of CO2 in water was studied for a batch vertical multiorifice baffled column (MOBC) with varying orifice diameters (d0) of 6.4-30 mm and baffle open area (α) of 15-42%. Bubble size distributions (BSDs) and the overall volumetric CO2 mass transfer coefficient (KLa) were experimentally evaluated for very low superficial gas velocities, UG of 0.12-0.81 mm s-1, using 5% v/v CO2 in the inlet gas stream at a range of fluid oscillations (f = 0-10 Hz and x0 = 0-10 mm). Remarkably, baffles presenting large do = 30 mm and α = 36%, therefore in the range typically found for single-orifice oscillatory baffled columns, were outperformed with respect to BSD control and CO2 dissolution by the other baffle designs or the same aerated column operating without baffles or fluid oscillations. Flow visualization and bubble tracking experiments also presented in this study established that a small do of 10.5 mm combined with a small value of α = 15% generates sufficient, strong eddy mixing capable of generating and trapping an extremely large fraction of microbubbles in the MOBC. This resulted in increased interfacial area yielding KLa values up to 65 ± 12 h-1 in the range of the UG tested, representing up to 3-fold increase in the rate of CO2 dissolution when compared to the unbaffled, steady column. In addition, a modi fied oscillatory Reynolds number, Re′o and Strouhal number, St' were presented to assist on the design and scale-up of gas-liquid systems based on multiorifice oscillatory ba ffled columns. This work is relevant to gas-liquid or multiphase chemical and biological systems relying on efficient dissolution of gaseous compounds into a liquid medium.BBSRC -European Commissio
Power Balance of a Hybrid Power Source in a Power Plant for a Small Propulsion Aircraft
This paper analyzes two different architectures for a hybrid power source comprising a PEM (Polymer Electrolyte Membrane) fuel cell and a Li ion battery. The hybrid power source feeds the propulsion motor of an all electrical aircraft, the Boeing Fuel Cell Demonstrator. The architectures are an unregulated and a regulated hybrid power source. The regulation is achieved by means of a controllable series boost converter (SBC) connected in series with the fuel cell. Both architectures have been simulated, implemented and tested in the Boeing Fuel Cell Demonstrator Airplane
Urgent need to clarify the definition of chronic critical limb ischemia - a position paper from the European Society for Vascular Medicine
Chronic critical lower limb ischemia (CLI) has been defined as ischemia that endangers the leg. An attempt was made to give a precise definition of CLI, based on clinical and hemodynamic data (Second European Consensus). CLI may be easily defined from a clinical point of view as rest pain of the distal foot or gangrene or ulceration. It is probably useful to add leg ulcers of other origin which do not heal because of severe ischemia, and to consider the impact of frailty on adverse outcome. From a hemodynamic viewpoint there is no consensus and most of the existing classifications are not based upon evidence. We should thus propose a definition and then validate it in a prospective cohort in order to define the patients at major risk of amputation, and also to define the categories of patients whose prognosis is improved by revascularisation. From today\u27s available data, it seems clear that the patients with a systolic toe pressure (STP) below 30 mmHg must be revascularised whenever possible. However other patients with clinically suspected CLI and STP above 30 mmHg must be evaluated and treated in specialised vascular units and revascularisation has to be discussed on a case by case basis, taking into account other data such as the WiFi classification for ulcers.In conclusion, many useful but at times contradictory definitions of CLI have been suggested. Only a few have taken into account evidence, and none have been validated prospectively. This paper aims to address this and to give notice that a CLI registry within Europe will be set up to prospectively validate, or not, the previous and suggested definitions of CLI
VARIATIONS OF CLIMATE PARAMETERS AND THEIR IMPACT ON CABERNET SAUVIGNON AND SAUVIGNON BLANC PHENOLOGY IN CONDITIONS OF CENTRAL SERBIA
Research carried out in vineyard of King Peter I Karadjordjevic-Royal Winery at Oplenac-Topola municipality, on Sauvignon blanc and Cabernet sauvignon. Vineyard planted with Sauvignon blanc is geographically positioned at GPS coordinates N 44° 14' 4" and E 20° 41' 15" and Cabernet sauvignon is geographically positioned at GPS coordinates N 44° 14' 35" and E 20° 41' 22". Climat parameters (series from 1982-2011 year) included following parameters: mean monthly, vegetation (april-october) and annual temperature, active and effective temperature, precipitation distribution (annual and vegetation) and wind direction. Phenological observation included beginning and end of following phenophases: bleeding, budbreakt, shoot growing, flowering, berry development and ripening. The greatest variation Sauvignon blanc manifested in duration of grape ripening which is in 2010. lasted 46 days while in 2011. lasted 34 days. Cabernet sauvignon in 2011. had a lower number of days that have passed from bleeding to full maturity (209 days) compared to 2010., when it passed 217 days
- …
