234 research outputs found
Feshbach resonance of heavy exciton-polaritons
We study interactions between polaritons formed by hybridization of excitons
in a two-dimensional (2D) semiconductor with surface optical phonons or
plasmons. These quasiparticles have a high effective mass and can bind into
bipolaritons near a Feshbach-like scattering resonance. We analyze the phase
diagram of a many-body condensate of heavy polaritons and bipolaritons and
calculate their absorption and luminescence spectra, which can be measured
experimentally.Comment: 11 pages, 7 figure
Majority of Cells Lining the Walls of the 3rd Ventricle in the Adult Rat Brain are not Neural Progenitor Cells
Transcription-Independent Heritability of Induced Histone Modifications in the Mouse Preimplantation Embryo
Enzyme-catalyzed, post-translational modifications of core histones have been implicated in the complex changes in gene expression that drive early mammalian development. However, until recently the small number of cells available from the preimplantation embryo itself has prevented quantitative analysis of histone modifications at key regulator genes. The possible involvement of histone modifications in the embryo's response to extracellular signals, or as determinants of cell fate or lineage progression, remains unclear. Here we describe the use of a recently-developed chromatin immunoprecipitation technique (CChIP) to assay histone modification levels at key regulator genes (Pou5f1, Nanog, Cdx2, Hoxb1, Hoxb9) as mouse embryos progress from 8-cell to blastocyst in culture. Only by the blastocyst stage, when the embryonic (Inner Cell Mass) and extra-embryonic (Trophoblast) lineages are compared, do we see the expected association between histone modifications previously linked to active and silent chromatin, and transcriptional state. To explore responses to an environmental signal, we exposed embryos to the histone deacetylase inhibitor, anti-epileptic and known teratogen valproic acid (VPA), during progression from 8-cell to morula stage. Such treatment increased H4 acetylation and H3 lysine 4 methylation at the promoters of Hoxb1 and Hoxb9, but not the promoters of Pou5f1, Nanog,Cdx2 or the housekeeping gene Gapdh. Despite the absence of detectable Hoxb transcription, these VPA-induced changes were heritable, following removal of the inhibitor, at least until the blastocyst stage. The selective hyperacetylation of Hoxb promoters in response to a histone deacetylase inhibitor, suggests that Hox genes have a higher turnover of histone acetates than other genes in the preimplantation embryo. To explain the heritability, through mitosis, of VPA-induced changes in histone modification at Hoxb promoters, we describe how an epigenetic feed-forward loop, based on cross-talk between H3 acetylation and H3K4 methylation, might generate a persistently increased steady-state level of histone acetylation in response to a transient signal
Pathways of Superoxide (O2-) decay in the Eastern Tropical North Atlantic
Superoxide (O2-: IUPAC name dioxide (•1−)) is an important transient reactive oxygen species (ROS) in the ocean formed as an intermediate in the redox transformation of oxygen (O2) into hydrogen peroxide (H2O2) and vice versa. This highly reactive and very short-lived radical anion can be produced both via photochemical and biological processes in the ocean. In this paper we examine the decomposition rate of O2- throughout the water column, using new data collected in the Eastern Tropical North Atlantic (ETNA) Ocean. For this approach we applied a semi factorial experimental design, to identify and quantify the pathways of the major identified sinks in the ocean. In this work we occupied 6 stations, 2 on the West African continental shelf and 4 open ocean stations, including the CVOO time series site adjacent to Cape Verde. Our results indicate that in the surface ocean, impacted by Saharan aerosols and sediment resuspension, the main decay pathways for superoxide is via reactions with Mn(II) and organic matter
Physicochemical Characterization of Passive Films and Corrosion Layers by Differential Admittance and Photocurrent Spectroscopy
Two different electrochemical techniques, differential admittance and photocurrent spectroscopy, for the characterization of electronic and solid state properties of passive films and corrosion layers are described and critically evaluated. In order to get information on the electronic properties of passive film and corrosion layers as well as the necessary information to locate the characteristic energy levels of the passive film/electrolyte junction like: flat band potential (Ufb), conduction band edge (EC) or valence band edge (EV), a wide use of Mott-Schottky plots is usually reported in corrosion science and passivity studies. It has been shown, in several papers, that the use of simple M-S theory to get information on the electronic properties and energy levels location at the film/electrolyte interface can be seriously misleading and/or conflicting with the physical basis underlying the M-S theory. A critical appraisal of this approach to the study of very thin and thick anodic passive film grown on base-metals (Cr, Ni, Fe, SS etc..) or on valve metals (Ta, Nb, W etc..) is reported in this work, together with possible alternative approach to overcome some of the mentioned inconsistencies. At this aim the theory of amorphous semiconductor Schottky barrier, introduced several years ago in the study of passive film/electrolyte junction, is reviewed by taking into account some of the more recent results obtained by the present authors. Future developments of the theory appears necessary to get more exact quantitative information on the electronic properties of passive films, specially in the case of very thin film like those formed on base metals and their alloys.
The second technique described in this chapter, devoted to the physico-chemical characterization of passive film and corrosion layers, is a more recent technique based on the analysis of the photo-electrochemical answer of passive film/electrolyte junction under illumination with photons having suitable energy. Such a technique usually referred to as Photocurrent Spectroscopy (PCS) has been developed on the basis of the large research effort carried out by several groups in the 1970’s and aimed to investigate the possible conversion of solar energy by means of electrochemical cells. In this work the fundamentals of semiconductor/electrolyte junctions under illumination will be highlighted both for crystalline and amorphous materials. The role of amorphous nature and film thickness on the photo-electrochemical answer of passive film/solution interface is reviewed as well the use of PCS for quantitative analysis of the film composition based on a semi-empirical correlation between optical band gap and difference of electronegativity of film constituents previously suggested by the present authors. In this frame the results of PCS studies on valve metal oxides and valve metal mixed oxides will be discussed in order to show the validity of the proposed method. The results of PCS studies aimed to get information on passive film composition and carried out by different authors on base metals (Fe, Cr, Ni) and their alloys, including stainless steel, will be also compared with compositional analysis carried out by well-established surface analysis techniques
Recommended from our members
Excitonic Bose Polarons in Electron–Hole Bilayers
Bose polarons are mobile particles of one kind dressed by excitations of the surrounding degenerate Bose gas of particles of another kind. These many-body objects have been realized in ultracold atomic gases and become a subject of intensive studies. In this work, we show that excitons in electron-hole bilayers offer new opportunities for exploring polarons in strongly interacting, highly tunable bosonic systems. We found that Bose polarons are formed by spatially direct excitons immersed in degenerate Bose gases of spatially indirect excitons (IXs). We detected both attractive and repulsive Bose polarons by measuring photoluminescence excitation spectra. We controlled the density of IX Bose gas by optical excitation and observed an enhancement of the energy splitting between attractive and repulsive Bose polarons with increasing IX density, in agreement with our theoretical calculations
An rRNA fragment in extracellular vesicles secreted by human airway epithelial cells increases the fluoroquinolone sensitivity of P. aeruginosa
Lung infections caused by antibiotic-resistant strains o
High‐Frequency Dissolved Organic Carbon and Nitrate Measurements Reveal Differences in Storm Hysteresis and Loading in Relation to Land Cover and Seasonality
Storm events dominate riverine loads of dissolved organic carbon (DOC) and nitrate and are expected to increase in frequency and intensity in many regions due to climate change. We deployed three high‐frequency (15 min) in situ absorbance spectrophotometers to monitor DOC and nitrate concentration for 126 storms in three watersheds with agricultural, urban, and forested land use/land cover. We examined intrastorm hysteresis and the influences of seasonality, storm size, and dominant land use/land cover on storm DOC and nitrate loads. DOC hysteresis was generally anticlockwise at all sites, indicating distal and plentiful sources for all three streams despite varied DOC character and sources. Nitrate hysteresis was generally clockwise for urban and forested sites, but anticlockwise for the agricultural site, indicating an exhaustible, proximal source of nitrate in the urban and forested sites, and more distal and plentiful sources of nitrate in the agricultural site. The agricultural site had significantly higher storm nitrate yield per water yield and higher storm DOC yield per water yield than the urban or forested sites. Seasonal effects were important for storm nitrate yield in all three watersheds and farm management practices likely caused complex interactions with seasonality at the agricultural site. Hysteresis indices did not improve predictions of storm nitrate yields at any site. We discuss key lessons from using high‐frequency in situ optical sensors
Review of Dental Impression Materials
Major advances in impression materials and their application have occurred during the last decade, with greater emphasis being placed on rubber impression materials than on dental compound, zinc oxide-eugenol, and agar and alginate. Of particular interest has been the effect of disinfection solutions on the qualities of impressions and the biocompatibility of impression materials. The principal advance in hydrocolloids has been the introduction of the agar/alginate impression technique, which has simplified the procedure and improved the quality of gypsum dies compared with those prepared in alginate impressions. The tear strength of some alginates has been improved, and some have been formulated so that the powder is dustless, thus reducing the health hazard as a result of patient inhalation of dust during the dispensing process. Polyether and silicone impression materials have been modified so that the working time, viscosity, and flexibility of the polyethers have been improved and, with the introduction of addition silicones, their accuracy has become exceptional. Although the early addition silicones liberated hydrogen after setting, thus delaying the pouring of models and dies, most addition silicones have been improved so that no hydrogen is released and dies can be poured immediately. The introduction of automatic mixing systems for addition silicones has simplified their manipulation, has reduced the number of voids in impressions, and has reduced the amount of material wasted. The incorporation of surfactants into addition silicones has made them hydrophilic, with wetting properties similar to those of polyethers, and has made pouring bubble-free gypsum dies easier. This review is confined to published and unpublished information of the past decade. It will also suggest trends that should be anticipated in the near future based on this information. The review will not present information developed before 1975, which is available in several textbooks on dental materials by Craig (1985a), Phillips (1982), and Williams and Cunningham (1979).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66604/2/10.1177_08959374880020012001.pd
Change in hardness of an as-cast and softening heat-treated low-gold-content alloy for bonding porcelain by simulated porcelain firing and its mechanism
- …
