520 research outputs found
Statistical properties of dust far-infrared emission
The description of the statistical properties of dust emission gives
important constraints on the physics of the interstellar medium but it is also
a useful way to estimate the contamination of diffuse interstellar emission in
the cases where it is considered a nuisance. The main goals of this analysis of
the power spectrum and non-Gaussian properties of 100 micron dust emission are
1) to estimate the power spectrum of interstellar matter density in three
dimensions, 2) to review and extend previous estimates of the cirrus noise due
to dust emission and 3) to produce simulated dust emission maps that reproduce
the observed statistical properties. The main results are the following. 1) The
cirrus noise level as a function of brightness has been previously
overestimated. It is found to be proportional to instead of ^1.5, where
is the local average brightness at 100 micron. This scaling is in
accordance with the fact that the brightness fluctuation level observed at a
given angular scale on the sky is the sum of fluctuations of increasing
amplitude with distance on the line of sight. 2) The spectral index of dust
emission at scales between 5 arcmin and 12.5 degrees is =-2.9 on average
but shows significant variations over the sky. Bright regions have
systematically steeper power spectra than diffuse regions. 3) The skewness and
kurtosis of brightness fluctuations is high, indicative of strong
non-Gaussianity. 4) Based on our characterization of the 100 micron power
spectrum we provide a prescription of the cirrus confusion noise as a function
of wavelength and scale. 5) Finally we present a method based on a modification
of Gaussian random fields to produce simulations of dust maps which reproduce
the power spectrum and non-Gaussian properties of interstellar dust emission.Comment: 13 pages, 13 figures. Accepted for publication in A&
Filter design for the detection of compact sources based on the Neyman-Pearson detector
This paper considers the problem of compact source detection on a Gaussian
background in 1D. Two aspects of this problem are considered: the design of the
detector and the filtering of the data. Our detection scheme is based on local
maxima and it takes into account not only the amplitude but also the curvature
of the maxima. A Neyman-Pearson test is used to define the region of
acceptance, that is given by a sufficient linear detector that is independent
on the amplitude distribution of the sources. We study how detection can be
enhanced by means of linear filters with a scaling parameter and compare some
of them (the Mexican Hat wavelet, the matched and the scale-adaptive filters).
We introduce a new filter, that depends on two free parameters (biparametric
scale-adaptive filter). The value of these two parameters can be determined,
given the a priori pdf of the amplitudes of the sources, such that the filter
optimizes the performance of the detector in the sense that it gives the
maximum number of real detections once fixed the number density of spurious
sources. The combination of a detection scheme that includes information on the
curvature and a flexible filter that incorporates two free parameters (one of
them a scaling) improves significantly the number of detections in some
interesting cases. In particular, for the case of weak sources embedded in
white noise the improvement with respect to the standard matched filter is of
the order of 40%. Finally, an estimation of the amplitude of the source is
introduced and it is proven that such an estimator is unbiased and it has
maximum efficiency. We perform numerical simulations to test these theoretical
ideas and conclude that the results of the simulations agree with the
analytical ones.Comment: 15 pages, 13 figures, version accepted for publication in MNRAS.
Corrected typos in Tab.
Oscillations of tori in the pseudo-Newtonian potential
Context. The high-frequency quasi-periodic oscillations (HF QPOs) in neutron
star and stellar-mass black hole X-ray binaries may be the result of a
resonance between the radial and vertical epicyclic oscillations in strong
gravity. Aims. In this paper we investigate the resonant coupling between the
epicyclic modes in a torus in a strong gravitational field. Methods. We perform
numerical simulations of axisymmetric constant angular momentum tori in the
pseudo-Newtonian potential. The epicyclic motion is excited by adding a
constant radial velocity to the torus. Results. We verify that slender tori
perform epicyclic motions at the frequencies of free particles, but the
epicyclic frequencies decrease as the tori grow thicker. More importantly, and
in contrast to previous numerical studies, we do not find a coupling between
the radial and vertical epicyclic motions. The appearance of other modes than
the radial epicyclic motion in our simulations is rather due to small numerical
deviations from exact equilibrium in the initial state of our torus.
Conclusions. We find that there is no pressure coupling between the two
axisymmetric epicyclic modes as long as the torus is symmetric with respect to
the equatorial plane. However we also find that there are other modes in the
disc that may be more attractive for explaining the HF QPOs.Comment: 8 pages, 9 figure
One-Point Probability Distribution Functions of Supersonic Turbulent Flows in Self-Gravitating Media
Turbulence is essential for understanding the structure and dynamics of
molecular clouds and star-forming regions. There is a need for adequate tools
to describe and characterize the properties of turbulent flows. One-point
probability distribution functions (pdf's) of dynamical variables have been
suggested as appropriate statistical measures and applied to several observed
molecular clouds. However, the interpretation of these data requires comparison
with numerical simulations. To address this issue, SPH simulations of driven
and decaying, supersonic, turbulent flows with and without self-gravity are
presented. In addition, random Gaussian velocity fields are analyzed to
estimate the influence of variance effects. To characterize the flow
properties, the pdf's of the density, of the line-of-sight velocity centroids,
and of the line centroid increments are studied. This is supplemented by a
discussion of the dispersion and the kurtosis of the increment pdf's, as well
as the spatial distribution of velocity increments for small spatial lags. From
the comparison between different models of interstellar turbulence, it follows
that the inclusion of self-gravity leads to better agreement with the observed
pdf's in molecular clouds. The increment pdf's for small spatial lags become
exponential for all considered velocities. However, all the processes
considered here lead to non-Gaussian signatures, differences are only gradual,
and the analyzed pdf's are in addition projection dependent. It appears
therefore very difficult to distinguish between different physical processes on
the basis of pdf's only, which limits their applicability for adequately
characterizing interstellar turbulence.Comment: 38 pages (incl. 17 figures), accepted for publication in ApJ, also
available with full resolution figures at
http://www.strw.leidenuniv.nl/~klessen/Preprint
On the Nature of X-ray Variability in Ark 564
We use data from a recent long ASCA observation of the Narrow Line Seyfert 1
Ark 564 to investigate in detail its timing properties. We show that a thorough
analysis of the time series, employing techniques not generally applied to AGN
light curves, can provide useful information to characterize the engines of
these powerful sources.We searched for signs of non-stationarity in the data,
but did not find strong evidences for it. We find that the process causing the
variability is very likely nonlinear, suggesting that variability models based
on many active regions, as the shot noise model, may not be applicable to Ark
564. The complex light curve can be viewed, for a limited range of time scales,
as a fractal object with non-trivial fractal dimension and statistical
self-similarity. Finally, using a nonlinear statistic based on the scaling
index as a tool to discriminate time series, we demonstrate that the high and
low count rate states, which are indistinguishable on the basis of their
autocorrelation, structure and probability density functions, are intrinsically
different, with the high state characterized by higher complexity.Comment: 13 pages, 13 figures, accepted for publication in A&
The Apparent and Intrinsic Shape of the APM Galaxy Clusters
We estimate the distribution of intrinsic shapes of APM galaxy clusters from
the distribution of their apparent shapes. We measure the projected cluster
ellipticities using two alternative methods. The first method is based on
moments of the discrete galaxy distribution while the second is based on
moments of the smoothed galaxy distribution. We study the performance of both
methods using Monte Carlo cluster simulations covering the range of APM cluster
distances and including a random distribution of background galaxies. We find
that the first method suffers from severe systematic biases, whereas the second
is more reliable. After excluding clusters dominated by substructure and
quantifying the systematic biases in our estimated shape parameters, we recover
a corrected distribution of projected ellipticities. We use the non-parametric
kernel method to estimate the smooth apparent ellipticity distribution, and
numerically invert a set of integral equations to recover the corresponding
distribution of intrinsic ellipticities under the assumption that the clusters
are either oblate or prolate spheroids. The prolate spheroidal model fits the
APM cluster data best.Comment: 8 pages, including 7 figures, accepted for publication in MNRA
Velocity Field Statistics in Star-Forming Regions. I. Centroid Velocity Observations
The probability density functions (pdfs) of molecular line centroid velocity
fluctuations and fluctuation differences at different spatial lags are
estimated for several nearby molecular clouds with active internal star
formation. The data consist of over 75,000 CO line profiles divided
among twelve spatially and/or kinematically distinct regions. Although three
regions (all in Mon R2) appear nearly Gaussian, the others show strong evidence
for non-Gaussian, often nearly exponential, centroid velocity pdfs, possibly
with power law contributions in the far tails. Evidence for nearly exponential
centroid pdfs in the neutral HI component of the ISM is also presented, based
on older optical and radio observations. These results are in contrast to pdfs
found in isotropic incompressible turbulence experiments and simulations.
Furthermore, no evidence is found for the scaling of difference pdf kurtosis
with Reynolds number which is seen in incompressible turbulence, and the
spatial distribution of high-amplitude velocity differences shows little
indication of the filamentary appearance predicted by decay simulations
dominated by vortical interactions. The variation with lag of the difference
pdf moments is presented as a constraint on future simulations.Comment: LaTeX, 23 pages, with 15 Figures included separately as gif image
files. Refereed/revised version accepted to the Astrophysical Journal. A
complete (but much larger) postscript version is available from
http://ktaadn.gsfc.nasa.gov/~miesc
Measuring the Three-Dimensional Structure of Galaxy Clusters. II. Are clusters of galaxies oblate or prolate?
The intrinsic shape of galaxy clusters can be obtained through a combination
of X-ray and Sunyaev-Zeldovich effect observations once cosmological parameters
are assumed to be known. In this paper we discuss the feasibility of modelling
galaxy clusters as either prolate or oblate ellipsoids. We analyze the
intra-cluster medium distribution for a sample of 25 X-ray selected clusters,
with measured Sunyaev-Zeldovich temperature decrements. A mixed population of
prolate and oblate ellipsoids of revolution fits the data well, with prolate
shapes preferred on a 60-76% basis. We observe an excess of clusters nearly
aligned along the line of sight, with respect to what is expected from a
randomly oriented cluster population, which might imply the presence of a
selection bias in our sample. We also find signs that a more general triaxial
morphology might better describe the morphology of galaxy clusters. Additional
constraints from gravitational lensing could disentangle the degeneracy between
an ellipsoidal and a triaxial morphology, and could also allow an unbiased
determination of the Hubble constant.Comment: 9 pages, 8 figures, accepted for publication in Astrophys.
- …
