1,214 research outputs found
Application of Swept-Sine Excitation for Acoustic Impedance Education
The NASA Langley Normal Incidence Tube (NIT) and Grazing Flow Impedance Tube (GFIT) are regularly employed to characterize the frequency response of acoustic liners through the eduction of their specific acoustic impedance. Both test rigs typically use an acoustic source that produces sine wave signals at discrete frequencies (Stepped-Sine) to educe the impedance. The current work details a novel approach using frequency-swept sine waveforms normalized to a constant sound pressure level for excitation. Determination of the sound pressure level and phase from microphone measurements acquired using swept-sine excitation is performed using a modified Vold-Kalman order tracking filter. Four acoustic liners are evaluated in the NIT and GFIT with both stepped-sine and swept-sine sources. Using these two methods, the educed impedance spectra are shown to compare favorably. However, the new (Swept-Sine) approach provides much greater frequency resolution in less time, allowing the acoustic liner properties to be studied in much greater detail
Magnetic field generated resistivity maximum in graphite
In zero magnetic field, B, the electrical resistivity, rho(O,T) of highly oriented pyrolytic (polycrystalline) graphite drops smoothly with decreasing T, becoming constant below 4 K. However, in a fixed applied magnetic field B, the resistivity rho(B,T) goes through a maximum as a function of T, with larger maximum for larger B. The temperature of the maximum increases with B, but saturates to a constant value near 25 K (exact T depends on sample) at high B. In single crystal graphite a maximum in rho(B,T) as a function of T is also present, but has the effects of Landau level quantization superimposed. Several possible explanations for the rho(B,T) maximum are proposed, but a complete explanation awaits detailed calculations involving the energy band structure of graphite, and the particular scattering mechanisms involved
Reflexive obstacle avoidance for kinematically-redundant manipulators
Dexterous telerobots incorporating 17 or more degrees of freedom operating under coordinated, sensor-driven computer control will play important roles in future space operations. They will also be used on Earth in assignments like fire fighting, construction and battlefield support. A real time, reflexive obstacle avoidance system, seen as a functional requirement for such massively redundant manipulators, was developed using arm-mounted proximity sensors to control manipulator pose. The project involved a review and analysis of alternative proximity sensor technologies for space applications, the development of a general-purpose algorithm for synthesizing sensor inputs, and the implementation of a prototypical system for demonstration and testing. A 7 degree of freedom Robotics Research K-2107HR manipulator was outfitted with ultrasonic proximity sensors as a testbed, and Robotics Research's standard redundant motion control algorithm was modified such that an object detected by sensor arrays located at the elbow effectively applies a force to the manipulator elbow, normal to the axis. The arm is repelled by objects detected by the sensors, causing the robot to steer around objects in the workspace automatically while continuing to move its tool along the commanded path without interruption. The mathematical approach formulated for synthesizing sensor inputs can be employed for redundant robots of any kinematic configuration
A 17 degree of freedom anthropomorphic manipulator
A 17 axis anthropomorphic manipulator, providing coordinated control of two seven degree of freedom arms mounted on a three degree of freedom torso-waist assembly, is presented. This massively redundant telerobot, designated the Robotics Research K/B-2017 Dexterous Manipulator, employs a modular mechanism design with joint-mounted actuators based on brushless motors and harmonic drive gear reducers. Direct joint torque control at the servo level causes these high-output joint drives to behave like direct-drive actuators, facilitating the implementation of an effective impedance control scheme. The redundant, but conservative motion control system models the manipulator as a spring-loaded linkage with viscous damping and rotary inertia at each joint. This approach allows for real time, sensor-driven control of manipulator pose using a hierarchy of competing rules, or objective functions, to avoid unplanned collisions with objects in the workplace, to produce energy-efficient, graceful motion, to increase leverage, to control effective impedance at the tool or to favor overloaded joints
Scaling Behavior of Cyclical Surface Growth
The scaling behavior of cyclical surface growth (e.g. deposition/desorption),
with the number of cycles n, is investigated. The roughness of surfaces grown
by two linear primary processes follows a scaling behavior with asymptotic
exponents inherited from the dominant process while the effective amplitudes
are determined by both. Relevant non-linear effects in the primary processes
may remain so or be rendered irrelevant. Numerical simulations for several
pairs of generic primary processes confirm these conclusions. Experimental
results for the surface roughness during cyclical electrodeposition/dissolution
of silver show a power-law dependence on n, consistent with the scaling
description.Comment: 2 figures adde
Effect of Long-Range Interactions in the Conserved Kardar-Parisi-Zhang Equation
The conserved Kardar-Parisi-Zhang equation in the presence of long-range
nonlinear interactions is studied by the dynamic renormalization group method.
The long-range effect produces new fixed points with continuously varying
exponents and gives distinct phase transitions, depending on both the
long-range interaction strength and the substrate dimension . The long-range
interaction makes the surface width less rough than that of the short-range
interaction. In particular, the surface becomes a smooth one with a negative
roughness exponent at the physical dimension d=2.Comment: 4 pages(LaTex), 1 figure(Postscript
A simulational and theoretical study of the spherical electrical double layer for a size-asymmetric electrolyte: the case of big coions
Monte Carlo simulations of a spherical macroion, surrounded by a
size-asymmetric electrolyte in the primitive model, were performed. We
considered 1:1 and 2:2 salts with a size ratio of 2 (i.e., with coions twice
the size of counterions), for several surface charge densities of the
macrosphere. The radial distribution functions, electrostatic potential at the
Helmholtz surfaces, and integrated charge are reported. We compare these
simulational data with original results obtained from the Ornstein-Zernike
integral equation, supplemented by the hypernetted chain/hypernetted chain
(HNC/HNC) and hypernetted chain/mean spherical approximation (HNC/MSA)
closures, and with the corresponding calculations using the modified
Gouy-Chapman and unequal-radius modified Gouy-Chapman theories. The HNC/HNC and
HNC/MSA integral equations formalisms show good concordance with Monte Carlo
"experiments", whereas the notable limitations of point-ion approaches are
evidenced. Most importantly, the simulations confirm our previous theoretical
predictions of the non-dominance of the counterions in the size-asymmetric
spherical electrical double layer [J. Chem. Phys. 123, 034703 (2005)], the
appearance of anomalous curvatures at the outer Helmholtz plane and the
enhancement of charge reversal and screening at high colloidal surface charge
densities due to the ionic size asymmetry.Comment: 11 pages, 7 figure
The Parallel Complexity of Growth Models
This paper investigates the parallel complexity of several non-equilibrium
growth models. Invasion percolation, Eden growth, ballistic deposition and
solid-on-solid growth are all seemingly highly sequential processes that yield
self-similar or self-affine random clusters. Nonetheless, we present fast
parallel randomized algorithms for generating these clusters. The running times
of the algorithms scale as , where is the system size, and the
number of processors required scale as a polynomial in . The algorithms are
based on fast parallel procedures for finding minimum weight paths; they
illuminate the close connection between growth models and self-avoiding paths
in random environments. In addition to their potential practical value, our
algorithms serve to classify these growth models as less complex than other
growth models, such as diffusion-limited aggregation, for which fast parallel
algorithms probably do not exist.Comment: 20 pages, latex, submitted to J. Stat. Phys., UNH-TR94-0
imported berry mix cake suspected to be the source of infection in Norway
Ongoing hepatitis A outbreak in Europe 2013 to 2014
An Anisotropic Ballistic Deposition Model with Links to the Ulam Problem and the Tracy-Widom Distribution
We compute exactly the asymptotic distribution of scaled height in a
(1+1)--dimensional anisotropic ballistic deposition model by mapping it to the
Ulam problem of finding the longest nondecreasing subsequence in a random
sequence of integers. Using the known results for the Ulam problem, we show
that the scaled height in our model has the Tracy-Widom distribution appearing
in the theory of random matrices near the edges of the spectrum. Our result
supports the hypothesis that various growth models in dimensions that
belong to the Kardar-Parisi-Zhang universality class perhaps all share the same
universal Tracy-Widom distribution for the suitably scaled height variables.Comment: 5 pages Revtex, 3 .eps figures included, new references adde
- …
