1,634 research outputs found
Relative motion at the bone-prosthesis interface
Bone ingrowth in porous surfaces of human joint implants is a desired condition for long-term fixation in patients who are physically active (such as in sport or work). It is generally recognized that little actual bone ingrowth occurs. The best clinical results report between 10 and 20% of the total prosthetic surface in contact with bone will feature good bone ingrowth. One inhibiting factor is the relative motion of the bone with respect to the implant during load-bearing. This study investigated mathematically the interface micromotion (transverse reversible relative motion) between a flat metal tibial prosthetic surface of a prototype implant, and the bone at the resection site. The aim was to assess the effect of perimeter fixation versus midcondylar pin fixation and the effect of plate thickness and plate stiffness.\ud
\ud
Results showed that in the prototype design the largest reversible relative bone motion occurred at the tibial eminence. By design, the skirt fixation at the perimeter would prevent bone motion. A PCA (Howmedica Inc.) prosthesis has been widely used clinically and was chosen for a control because its fixation by two pegs beneath the condyles is a common variation on the general design of a relatively thick and stiff metal tibial support tray with pegs in each condylar area. The PCA tibial prosthesis showed the largest bone motion at the perimeter along the midcondylar mediolateral line, while being zero at the pegs. Maximum relative bone motion for the prototype was 37 ¿m and for the control was 101 ¿m. Averaged values showed the prototype to have 38% of the relative reversible bone motion of the control (PCA)
An interferometric study of the post-AGB binary 89 Herculis. II Radiative transfer models of the circumbinary disk
The presence of disks and outflows is widespread among post-AGB binaries. In
the first paper of this series, a surprisingly large fraction of optical light
was found to be resolved in the 89 Her post-AGB system. The data showed this
flux to arise from close to the central binary. Scattering off the inner rim of
the circumbinary disk, or in a dusty outflow were suggested as two possible
origins. With detailed dust radiative transfer models of the disk we aim to
discriminate between these two configurations. By including Herschel/SPIRE
photometry, we extend the SED such that it now fully covers UV to sub-mm
wavelengths. The MCMax radiative transfer code is used to create a large grid
of disk models. Our models include a self-consistent treatment of dust settling
as well as of scattering. A Si-rich composition with two additional opacity
sources, metallic Fe or amorphous C, are tested. The SED is fit together with
mid-IR (MIDI) visibilities as well as the optical and near-IR visibilities of
Paper I, to constrain the structure of the disk and in particular of its inner
rim. The near-IR visibility data require a smooth inner rim, here obtained with
a two-power-law parameterization of the radial surface density distribution. A
model can be found that fits all the IR photometric and interferometric data
well, with either of the two continuum opacity sources. Our best-fit passive
models are characterized by a significant amount of mm-sized grains, which are
settled to the midplane of the disk. Not a single disk model fits our data at
optical wavelengths though, the reason being the opposing constraints imposed
by the optical and near-IR interferometric data. A geometry in which a passive,
dusty, and puffed-up circumbinary disk is present, can reproduce all the IR but
not the optical observations of 89 Her. Another dusty, outflow or halo,
component therefore needs to be added to the system.Comment: 15 pages, in pres
Debonding damage analysis in composite-masonry strengthening systems with polymer- and mortar-based matrix by means of the acoustic emission technique
Different types of strengthening systems, based on fiber reinforced materials, are under investigation for external strengthening of historic masonry structures. A full characterization of the bond behavior and of the short- and long-term failure mechanisms is crucial to ensure effective design, compatibility with the historic substrate and durability of the strengthening solution. Therein, non-destructive techniques are essential for bond characterization, durability assessment and on-site condition monitoring. In this paper, the acoustic emission (AE) technique is evaluated for debonding characterization and localization on fiber reinforced polymer (FRP) and steel reinforced grout-strengthened clay bricks. Both types of strengthening systems are subjected to accelerated ageing tests under thermal cycles and to single-lap shear bond tests. During the reported experimental campaign, AE data from the accelerated ageing tests demonstrated the thermal incompatibility between brick and epoxy-bonded FRP composites, and debonding damage was successfully detected, characterized and located. In addition, a qualitative comparison is made with digital image correlation and infrared thermography, in view of efficient on-site debonding detection.The authors acknowledge the financial support of the Research Foundation-Flanders (FWO) for the mobility grant offered to Els Verstrynge.info:eu-repo/semantics/publishedVersio
Towards online relational schema transformations
Current relational database systems are ill-equipped for changing the structure of data while the database is in use. This is a real problem for systems for which we expect 24/7 availability, such as telecommunication, payment, and control systems. As a result, developers tend to avoid making changes because of the downtime consequences. The urgency to solve this problem is evident by a multitude of tools developed in industry, such as pt-online-schema-change(1) and oak-online-alter- table(2). Also, MySQL recently added limited support for online schema changes(3).\ud
\ud
Contributions: We want to draw the attention of the database community to the problem of online schema changes. We have defined requirements for online schema change mechanisms, and we have experimentally investigated existing solutions. Our results show that current solutions are unsatisfactory for complex schema changes. We propose lazy schema changes as a solution.\ud
\ud
Experimental Setup: To assess the performance and behaviour of existing mechanisms for on- line schema changes, we have developed an experiment based on the standard TPC-C benchmark. For each of the relational schema transformation classes that we have identified, we chose a rep- resentative transformation for the TPC-C schema. We perform the schema change online while the TPC-C benchmark is running, and measure the impact on the TPC-C transaction through- put. We have performed our experiment on PostgreSQL, which does not support online schema changes, MySQL, which supports basic online schema changes, and using pt-online-schema-change on MySQL, as a representative for tools that use triggers to allow online schema changes.\ud
\ud
Results: We found that existing solutions are inadequate except for the simplest of schema changes. Some single-relation transformations can be performed transactionally and online. How- ever, existing solutions do not allow schema transformations to be composed using transactions. As a result, in complex transformations, intermediate states can be exposed to database programs, which are non-trivial to handle correctly. A secondary problem is that these solutions are much slower than offline transformations, which may not be acceptable for certain applications.\ud
\ud
Proposal: We propose a more fundamental solution based on lazy schema transformations. The main idea is that schema changes can be described as a view on the existing schema, which can be materialized lazily to perform the schema transformation. The data in the new schema is immedi- ately accessible by computing parts of the view on demand. For a large number of cases we expect that this approach allows schema transformations without any downtime, and with minimal impact on running transactions, while the ACID properties are maintained. Moreover, lazy transforma- tions can naturally be composed as transactions, allowing complex online schema transformations. We are developing an implementation of these ideas based on a persistent functional language
The Compression of Dark Matter Halos by Baryonic Infall
The initial radial density profiles of dark matter halos are laid down by
gravitational collapse in hierarchical structure formation scenarios and are
subject to further compression as baryons cool and settle to the halo centers.
We here describe an explicit implementation of the algorithm, originally
developed by Young, to calculate changes to the density profile as the result
of adiabatic infall in a spherical halo model. Halos with random motion are
more resistant to compression than are those in which random motions are
neglected, which is a key weakness of the simple method widely employed.
Young's algorithm results in density profiles in excellent agreement with those
from N-body simulations. We show how the algorithm may be applied to determine
the original uncompressed halos of real galaxies, a step which must be computed
with care in order to enable a confrontation with theoretical predictions from
theories such as LCDM.Comment: Revised version for ApJ. 8 pages, 8 figures, latex uses emulateap
A 180 Kpc Tidal Tail in the Luminous Infrared Merger Arp 299
We present VLA HI observations and UH88 deep optical B- and R-band
observations of the IR luminous merger Arp 299 (= NGC 3690 + IC 694). These
data reveal a gas-rich, optically faint tidal tail with a length of over 180
kpc. The size of this tidal feature necessitates an old interaction age for the
merger (~750 Myr since first periapse), which is currently experiencing a very
young star burst (~20 Myr). The observations reveal a most remarkable structure
within the tidal tail: it appears to be composed of two parallel filaments
separated by ~20 kpc. One of the filaments is gas rich with little if any
starlight, while the other is gas poor. We believe that this bifurcation
results from a warped disk in one of the progenitors. The quantities and
kinematics of the tidal HI suggest that Arp 299 results from the collision of a
retrograde Sab-Sb galaxy (IC 694) and a prograde Sbc-Sc galaxy (NGC 3690) that
occurred 750 Myr ago and which will merge into a single object in ~60 Myr. We
suggest that the present IR luminous phase in this system is due in part to the
retrograde spin of IC 694. Finally, we discuss the apparent lack of tidal dwarf
galaxies within the tail.Comment: LaTex, 14 pages, 11 figures, 4 tables, uses emulateapj.sty. Accepted
to AJ for July 1999. For version with full-resolution images see
http://www.cv.nrao.edu/~jhibbard/a299/HIpaper/a299HI.htm
A HST study of the stellar populations in the cometary dwarf irregular galaxy NGC 2366
We present V and I photometry of the resolved stars in the cometary dwarf
irregular galaxy NGC 2366, using Wide Field Planetary Camera 2 images obtained
with the Hubble Space Telescope. The resulting color-magnitude diagram reaches
down to I~26.0 mag. It reveals not only a young population of blue
main-sequence stars (age <30 Myr) but also an intermediate-age population of
blue and red supergiants (20 Myr<age<100 Myr), and an older evolved populations
of asymptotic giant branch (AGB) stars (age >100 Myr) and red giant branch
(RGB) stars (age >1 Gyr). The measured magnitude I=23.65+/-0.10 mag of the RGB
tip results in a distance modulus m-M=27.67+/-0.10, which corresponds to a
distance of 3.42+/-0.15 Mpc, in agreement with previous distance
determinations. The youngest stars are associated with the bright complex of
HII regions NGC 2363=Mrk 71 in the southwest extremity of the galaxy. As a
consequence of the diffusion and relaxation processes of stellar ensembles, the
older the stellar population is, the smoother and more extended is its spatial
distribution. An underlying population of older stars is found throughout the
body of NGC 2366. The most notable feature of this older population is the
presence of numerous relatively bright AGB stars. The number ratio of AGB to
RGB stars and the average absolute brightness of AGB stars in NGC 2366 are
appreciably higher than in the BCD VII Zw 403, indicating a younger age of the
AGB stars in NGC 2366. In addition to the present burst of age <100 Myr, there
has been strong star formation activity in the past of NGC 2366, from ~100 Myr
to <3 Gyr ago.Comment: 32 pages, 15 figures, accepted for publication in the Astrophysical
Journa
Discovery of a high state AM CVn binary in the Galactic Bulge Survey
We report on the discovery of a hydrogen-deficient compact binary (CXOGBS
J175107.6-294037) belonging to the AM CVn class in the Galactic Bulge Survey.
Deep archival X-ray observations constrain the X-ray positional uncertainty of
the source to 0.57 arcsec, and allow us to uniquely identify the optical and UV
counterpart. Optical spectroscopic observations reveal the presence of broad,
shallow He i absorption lines while no sign of hydrogen is present, consistent
with a high state system. We present the optical lightcurve from Optical
Gravitational Lensing Experiment monitoring, spanning 15 years. It shows no
evidence for outbursts; variability is present at the 0.2 mag level on
timescales ranging from hours to weeks. A modulation on a timescale of years is
also observed. A Lomb-Scargle analysis of the optical lightcurves shows two
significant periodicities at 22.90 and 23.22 min. Although the physical
interpretation is uncertain, such timescales are in line with expectations for
the orbital and superhump periods. We estimate the distance to the source to be
between 0.5 - 1.1 kpc. Spectroscopic follow-up observations are required to
establish the orbital period, and to determine whether this source can serve as
a verification binary for the eLISA gravitational wave mission.Comment: Accepted for publication in MNRAS Letter
- …
