1,561 research outputs found
Random Spin-orbit Coupling in Spin Triplet Superconductors: Stacking Faults in Sr_2RuO_4 and CePt_3Si
The random spin-orbit coupling in multicomponent superconductors is
investigated focusing on the non-centrosymmetric superconductor CePt_3Si and
the spin triplet superconductor Sr_2RuO_4. We find novel manifestations of the
random spin-orbit coupling in the multicomponent superconductors with
directional disorders, such as stacking faults. The presence of stacking faults
is indicated for the disordered phase of CePt_3Si and Sr_2RuO_4. It is shown
that the d-vector of spin triplet superconductivity is locked to be d = k_y x -
k_x y with the anisotropy \Delta T_c/T_c0 \sim \bar{\alpha}^2/T_c0 W_z, where
\bar{\alpha}, T_c0, and W_z are the mean square root of random spin-orbit
coupling, the transition temperature in the clean limit, and the kinetic energy
along the c-axis, respectively. This anisotropy is much larger (smaller) than
that in the clean bulk Sr_2RuO_4 (CePt_3Si). These results indicate that the
helical pairing state d = k_y x - k_x y in the eutectic crystal
Sr_2RuO_4-Sr_3Ru_2O_7 is stabilized in contrast to the chiral state d = (k_x
\pm i k_y) z in the bulk Sr_2RuO_4. The unusual variation of T_c in CePt_3Si is
resolved by taking into account the weak pair-breaking effect arising from the
uniform and random spin-orbit couplings. These superconductors provide a basis
for discussing recent topics on Majorana fermions and non-Abelian statistics.Comment: J. Phys. Soc. Jpn. 79 (2010) 08470
Superconductivity without Local Inversion Symmetry; Multi-layer Systems
While multi-layer systems can possess global inversion centers, they can have
regions with locally broken inversion symmetry. This can modify the
superconducting properties of such a system. Here we analyze two dimensional
multi-layer systems yielding spatially modulated antisymmetric spin-orbit
coupling (ASOC) and discuss superconductivity with mixed parity order
parameters. In particular, the influence of ASOC on the spin susceptibility is
investigated at zero temperature. For weak inter-layer coupling we find an
enhanced spin susceptibility induced by ASOC, which hints the potential
importance of this aspect for superconducting phase in specially structured
superlattices.Comment: 4 pages, 2 figures, proceedings of the 26th International Conference
on Low Temperature Physics (LT26
Pseudogap of Color Superconductivity in Heated Quark Matter
We show that the pseudogap of the quark density of states is formed in hot
quark matter as a precursory phenomenon of the color superconductivity on the
basis of a low-energy effective theory. We clarify that the decaying process of
quarks near Fermi surface to a hole and the diquark soft mode (qq)_{soft} is
responsible for the formation of the pseudogap. Our result suggests that the
pseudogap is a universal phenomenon in strong coupling superconductors.Comment: Introduction is largely rewritten and minor changes are made in other
parts of the text. Some referenes with comments are added. Numerical errors
in the figures are corrected. To appear in Phys. Rev.
Antiferromagnetic Order and \pi-triplet Pairing in the Fulde-Ferrell-Larkin-Ovchinnikov State
The antiferromagnetic Fulde-Ferrell-Larkin-Ovchinnikov (AFM-FFLO) state of
coexisting d-wave FFLO superconductivity and incommensurate AFM order is
studied on the basis of Bogoliubov-de Gennes (BdG) equations. We show that the
incommensurate AFM order is stabilized in the FFLO state by the appearance of
the Andreev bound state localized around the zeros of the FFLO order parameter.
The AFM-FFLO state is further enhanced by the induced \pi-triplet
superconductivity (pair density wave). The AFM order occurs in the FFLO state
even when it is neither stable in the normal state nor in the BCS state. The
order parameters of the AFM order, d-wave superconductivity, and \pi-triplet
pairing are investigated by focusing on their spatial structures. Roles of the
spin fluctuations beyond the BdG equations are discussed. Their relevance to
the high-field superconducting phase of CeCoIn_5 is discussed.Comment: Typos are fixed. Published versio
Disordered Fulde-Ferrel-Larkin-Ovchinnikov State in d-wave Superconductors
We study the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) superconducting state in
the disordered systems. We analyze the microscopic model, in which the d-wave
superconductivity is stabilized near the antiferromagnetic quantum critical
point, and investigate two kinds of disorder, namely, box disorder and point
disorder, on the basis of the Bogoliubov-deGennes (BdG) equation. The spatial
structure of modulated superconducting order parameter and the magnetic
properties in the disordered FFLO state are investigated. We point out the
possibility of "FFLO glass" state in the presence of strong point disorders,
which arises from the configurational degree of freedom of FFLO nodal plane.
The distribution function of local spin susceptibility is calculated and its
relation to the FFLO nodal plane is clarified. We discuss the NMR measurements
for CeCoIn_5.Comment: Submitted to New. J. Phys. a focus issue on "Superconductors with
Exotic Symmetries
Effects of proximity to an electronic topological transition on normal state transport properties of the high-Tc superconductors
Within the time dependent Ginzburg-Landau theory, the effects of the
superconducting fluctuations on the transport properties above the critical
temperature are characterized by a non-zero imaginary part of the relaxation
rate gamma of the order parameter. Here, we evaluate Im gamma for an
anisotropic dispersion relation typical of the high-Tc cuprate superconductors
(HTS), characterized by a proximity to an electronic topological transition
(ETT). We find that Im gamma abruptly changes sign at the ETT as a function of
doping, in agreement with the universal behavior of the HTS. We also find that
an increase of the in-plane anisotropy, as is given by a non-zero value of the
next-nearest to nearest hopping ratio r=t'/t, increases the value of | Im gamma
| close to the ETT, as well as its singular behavior at low temperature,
therefore enhancing the effect of superconducting fluctuations. Such a result
is in qualitative agreement with the available data for the excess Hall
conductivity for several cuprates and cuprate superlattices.Comment: to appear in Phys. Rev.
Conservation laws, uncertainty relations, and quantum limits of measurements
The uncertainty relation between the noise operator and the conserved
quantity leads to a bound for the accuracy of general measurements. The bound
extends the assertion by Wigner, Araki, and Yanase that conservation laws limit
the accuracy of ``repeatable'', or ``nondisturbing'', measurements to general
measurements, and improves the one previously obtained by Yanase for spin
measurements. The bound also sets an obstacle to making a small quantum
computer.Comment: 4 pages, RevTex, to appear in PR
In-plane Anisotropy of the Magnetic Fluctuations in NaxCoO2-yH2O
We report the Co NMR studies of the in-plane anisotropy of bilayer
hydrated Na using a oriented
powder sample by a magnetic field in Fluorinert FC70. We found for the first
time the -plane anisotropy of the Co NMR Knight shift , the
nuclear spin-lattice relaxation rate 1/ and the nuclear spin-spin
relaxation rate 1/ at a magnetic field 7.5 T up to 200K. Below
75 K, the anisotropy of is large compared with that at high temperatures.
The hyperfine coupling constants seem to change around the temperature 150 K,
in which the bulk susceptibility shows broad minimum, suggesting a
change of the electronic state of CoO plane. 1/ also shows a
significant anisotropy, which cannot be explained only by the anisotropy of the
hyperfine coupling constants nor the anisotropic uniform spin susceptibility.
The difference in the in-plane anisotropy of from that of indicates
that the magnetic fluctuation at a finite wave vector is also
anisotropic and the anisotropy is different from that at .Comment: 4 pages, 5 figure
Band structures of P-, D-, and G-surfaces
We present a theoretical study on the band structures of the electron
constrained to move along triply-periodic minimal surfaces. Three well known
surfaces connected via Bonnet transformations, namely P-, D-, and G-surfaces,
are considered. The six-dimensional algebra of the Bonnet transformations [C.
Oguey and J.-F. Sadoc, J. Phys. I France 3, 839 (1993)] is used to prove that
the eigenstates for these surfaces are interrelated at a set of special points
in the Brillouin zones. The global connectivity of the band structures is,
however, different due to the topological differences of the surfaces. A
numerical investigation of the band structures as well as a detailed analysis
on their symmetry properties is presented. It is shown that the presence of
nodal lines are closely related to the symmetry properties. The present study
will provide a basis for understanding further the connection between the
topology and the band structures.Comment: 21 pages, 8 figures, 3 tables, submitted to Phys. Rev.
Antiferromagnetic Phases in the Fulde-Ferrell-Larkin-Ovchinnikov State of CeCoIn_5
The antiferromagnetic (AFM) order in the Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) superconducting state is analyzed on the basis of a Ginzburg-Landau
theory. To examine the possible AFM-FFLO state in CeCoIn_5, we focus on the
incommensurate AFM order characterized by the wave vector Q = Q_{0} \pm q_inc
with Q_0 =(\pi,\pi,\pi) and q_inc \parallel [110] or [1-10] in the tetragonal
crystal structure. We formulate the two component Ginzburg-Landau theory and
investigate the two degenerate incommensurate AFM order. We show that the
pinning of AFM moment due to the FFLO nodal planes leads to multiple phases in
magnetic fields along [100] or [010]. The phase diagrams for various coupling
constants between the two order parameters are shown for the comparison with
CeCoIn_5. Experimental results of the NMR and neutron scattering measurements
are discussed.Comment: 6pages, Proceedings of ICHE2010, To appear in J. Phys. Soc. Jpn.
Supp
- …
