39 research outputs found

    Modified carbon fabric electrodes: preparation and electrochemical behavior toward amaranth electrolysis

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10800-014-0769-9The electrochemical behavior of non-modified, Pt-modified, and Pt/polyaniline-modified carbon fiber textile electrodes was studied through a series of electrolyses, under potentiostatic conditions, on an amaranth/sulfuric solution in the presence or absence of chloride ion. The morphology of the dispersed Pt, PANI, and PANI/Pt coatings was analyzed by scanning electron microscopy. Scanning electrochemical microscopy confirmed that the textile surface was effectively modified by the electrocatalytic material. Color removal reached values above 90 % in both electroreduction and electrooxidation processes. The amaranth electroreductions carried out with the non-modified electrode showed better charge efficiency than those with the Pt-modified textile electrode. The electrooxidations with Pt-modified textile electrodes showed a significant reduction in electrolysis time. Ultraviolet-visible and Fourier transform infrared with attenuated total reflection spectra enabled the electrochemical behavior of the non-modified and Pt/PANI-modified electrodes to be distinguished.The authors wish to acknowledge to the Spanish Ministerio de Ciencia e Innovacion (contract CTM2011-23583) and Universitat Politecnica de Valencia (Vicerrectorado de Investigacion PAID-06-10 contract 003-233) for the financial support; and as well as Carbongen S. A. (Cocentaina, Spain), who kindly donated the activated carbon fabric. J. Molina is grateful to the Conselleria d'Educacio, Formacio i Ocupacio (Generalitat Valenciana) for the Programa VALi+D Postdoctoral Fellowship. A.I. del Rio is grateful to the Spanish Ministerio de Ciencia y Tecnologia for the FPI fellowship.Fernández Sáez, J.; Del Río García, AI.; Molina Puerto, J.; Bonastre Cano, JA.; Cases Iborra, FJ. (2015). Modified carbon fabric electrodes: preparation and electrochemical behavior toward amaranth electrolysis. Journal of Applied Electrochemistry. 45(3):263-272. https://doi.org/10.1007/s10800-014-0769-9S263272453Marsh H, Reinoso FR (2000) Sciences of carbon materials. Universidad de Alicante, AlicanteKinoshita K (1998) Carbon: electrochemical and physicochemical properties. Wiley, New York, pp 293–387Burchell TD (1999) Carbon materials for advances technologies. Pergamon, AmsterdamDomínguez SD, Pardilla JA, Murcia AB, Morallón E, Amorós DC (2008) Electrochemical deposition of Pt nanoparticles on different carbon supports and conducting polymers. J Appl Electrochem 38:259–268Kezhong W, Xu M, Xindong W, Jingling L (2005) Pt–Polyaniline-modified carbon fiber electrode for the electrooxidation of methanol. Rare Met 24:33–36Wu G, Li L, Li JH, Xu BQ (2006) Methanol electrooxidation on Pt particles dispersed into PANI/SWNT composite films. J Power Sources 155:118–127Singh RN, Awasthi R, Tiwari SK (2010) Electro-catalytic activities of binary nano-composites of Pt and nano-carbon/multiwall carbon nanotube for methanol electro-electrooxidation. Open Catal J 3:50–57Zhiani M, Rezaei B, Jalili J (2010) Methanol electro-electrooxidation on Pt/C modified by polyaniline nanofibers for DMFC applications. Int J Hydrogen Energ 35:9298–9305Laborde H, Léger J-M, Lamy C (1994) Electrocatalytic electrooxidation of methanol and C1 molecules on highly dispersed electrodes. Part 1: Pt in polyaniline. J Appl Electrochem 24:219–226Niu L, Li Q, Wei F, Wu S, Liu P, Cao X (2005) Electrocatalytic behaviour of Pt-modified polyaniline electrode for methanol electrooxidation: effect of Pt deposition modes. J Electroanal Chem 578:331–337Huang LM, Tang WR, Wen TCh (2007) Spatially electrodeposited Pt in polyaniline doped with poly(styrene sulfonic acid) for methanol electrooxidation. J Power Sources 164:519–526Fernández J, Molina J, del Río AI, Bonastre J, Cases FJ (2012) Synthesis and characterization of electrochemically platinum–polyaniline modified carbon textile electrodes. Int J Electrochem Sci 7:10175–10189Snehalatha M, Ravikumar C, Sekar N, Jayakumar SV, Joe H (2008) FT–Raman, IR and UV–visible spectral investigations and ab initio computations of a nonlinear food dye amaranth. J Raman Spectrosc 39:928–936Rajendran L, Ananthi SP (2004) Analysis of positive feedback currents at the scanning electrochemical microscope. J Electroanal Chem 561:113–118Niu L, Li Q, Wei F, Chen X, Wang W (2003) Formation optimization of Pt-modified polyaniline films for the electrocatalytic electrooxidation of methanol. Synthetic Met 139:271–276Sala M, del Río AI, Molina J, Cases F, Gutierrez-Bouzán MC (2012) Influence of cell design and electrode materials on the decoloration of dyeing effluents. Int J Electrochem Sc 7:12470–12488Priyantha N, Malavipathirana S (1996) Effect of chloride ions on the electrochemical behavior of platinum surfaces. J Natn Sci Coun Sri Lanka 24:237–246Rajeev J, Nidhi Sh, Keisham R (2009) Electrochemical treatment of pharmaceutical azo dye amaranth from waste water. J Appl Electochem 39:577–582Nadupalli S, Koorbanally N, Jonnalagadda SB (2011) Kinetics and mechanism of the oxidation of amaranth with hypochlorite. J Phys Chem A 115:7948–795

    Use of facile mechanochemical method to functionalize carbon nanofibers with nanostructured polyaniline and their electrochemical capacitance

    Get PDF
    A facile approach to functionalize carbon nanofibers [CNFs] with nanostructured polyaniline was developed via in situ mechanochemical polymerization of polyaniline in the presence of chemically treated CNFs. The nanostructured polyaniline grafting on the CNF was mainly in a form of branched nanofibers as well as rough nanolayers. The good dispersibility and processability of the hybrid nanocomposite could be attributed to its overall nanostructure which enhanced its accessibility to the electrolyte. The mechanochemical oxidation polymerization was believed to be related to the strong Lewis acid characteristic of FeCl3 and the Lewis base characteristic of aniline. The growth mechanism of the hierarchical structured nanofibers was also discussed. After functionalization with the nanostructured polyaniline, the hybrid polyaniline/CNF composite showed an enhanced specific capacitance, which might be related to its hierarchical nanostructure and the interaction between the aromatic polyaniline molecules and the CNFs

    Palladium Nanoparticles Loaded on Carbon Modified TiO2 Nanobelts for Enhanced Methanol Electrooxidation

    Get PDF
    Made available based on the terms of the Springer open license. Publication available at Springer via http://dx.doi.org/10.5101/nml.v5i3.p202-212Carbon modified TiO2 nanobelts (TiO2-C) were synthesized using a hydrothermal growth method, as a support material for palladium (Pd) nanoparticles (Pd/TiO2-C) to improve the electrocatalytic performance for methanol electrooxidation by comparison to Pd nanoparticles on bare TiO2 nanobelts (Pd/TiO2) and activated carbon (Pd/AC). Cyclic voltammetry characterization was conducted with respect to saturated calomel electrode (SCE) in an alkaline methanol solution, and the results indicate that the specific activity of Pd/TiO2-C is 2.2 times that of Pd/AC and 1.5 times that of Pd/TiO2. Chronoamperometry results revealed that the TiO2-C support was comparable in stability to activated carbon; but possesses an enhanced current density for methanol oxidation at a potential of -0.2 V vs. SCE. The current study demonstrates the potential of Pd nanoparticle loaded on hierarchical TiO2-C nanobelts for electrocatalytic applications such as fuel cells and batteries.FedDev Ontario through the Applied Research and Commercialization (ARC) InitiativeNatural Sciences and Engineering Research Council of Canada (NSERC) programMicrobonds, Inc

    Carbon supported Fe–Co nanoparticles with enhanced activity and BH<sub>4</sub><sup>−</sup> tolerance used as a cathode in a passive air breathing anion exchange membrane direct borohydride fuel cell

    Full text link
    A highly active nanocatalyst, Fe50–Co50/C, for the ORR was introduced, which exhibits excellent tolerance toward NaBH4 electrooxidation in DBFC.</p

    The nearest MPSS pattern in data envelopment analysis

    Full text link

    Effects of KCC-1/Ag Nanoparticles on The Mechanical Properties of Concrete

    No full text

    A DFT study of hydrogen chemisorption on V (100) surfaces

    Full text link
    corecore