3,458 research outputs found

    Metastable SUSY Breaking, de Sitter Moduli Stabilisation and K\"ahler Moduli Inflation

    Full text link
    We study the influence of anomalous U(1) symmetries and their associated D-terms on the vacuum structure of global field theories once they are coupled to N=1 supergravity and in the context of string compactifications with moduli stabilisation. In particular, we focus on a IIB string motivated construction of the ISS scenario and examine the influence of one additional U(1) symmetry on the vacuum structure. We point out that in the simplest one-Kahler modulus compactification, the original ISS vacuum gets generically destabilised by a runaway behaviour of the potential in the modulus direction. In more general compactifications with several Kahler moduli, we find a novel realisation of the LARGE volume scenario with D-term uplifting to de Sitter space and both D-term and F-term supersymmetry breaking. The structure of soft supersymmetry breaking terms is determined in the preferred scenario where the standard model cycle is not stabilised non-perturbatively and found to be flavour universal. Our scenario also provides a purely supersymmetric realisation of Kahler moduli (blow-up and fibre) inflation, with similar observational properties as the original proposals but without the need to include an extra (non-SUSY) uplifting term.Comment: 38 pages, 8 figures. v2: references added, minor correction

    Sequestered Dark Matter

    Full text link
    We show that hidden-sector dark matter is a generic feature of the type IIB string theory landscape and that its lifetime may allow for a discovery through the observation of very energetic gamma-rays produced in the decay. Throats or, equivalently, conformally sequestered hidden sectors are common in flux compactifications and the energy deposited in these sectors can be calculated if the reheating temperature of the standard model sector is known. Assuming that throats with various warp factors are available in the compact manifold, we determine which throats maximize the late-time abundance of sequestered dark matter. For such throats, this abundance agrees with cosmological data if the standard model reheating temperature was 10^10 - 10^11 GeV. In two distinct scenarios, the mass of dark matter particles, i.e. the IR scale of the throat, is either around 10^5 GeV or around 10^10 GeV. The lifetime and the decay channels of our dark matter candidates depend crucially on the fact that the Klebanov-Strassler throat is supersymmetric. Furthermore, the details of supersymmetry breaking both in the throat and in the visible sector play an essential role. We identify a number of scenarios where this type of dark matter can be discovered via gamma-ray observations.Comment: 36 pages, 3 figures; v2: references added, v3: introduction extended and typos correcte

    On the Effective Description of Large Volume Compactifications

    Full text link
    We study the reliability of the Two-Step moduli stabilization in the type-IIB Large Volume Scenarios with matter and gauge interactions. The general analysis is based on a family of N=1 Supergravity models with a factorizable Kaehler invariant function, where the decoupling between two sets of fields without a mass hierarchy is easily understood. For the Large Volume Scenario particular analyses are performed for explicit models, one of such developed for the first time here, finding that the simplified version, where the Dilaton and Complex structure moduli are regarded as frozen by a previous stabilization, is a reliable supersymmetric description whenever the neglected fields stand at their leading F-flatness conditions and be neutral. The terms missed by the simplified approach are either suppressed by powers of the Calabi-Yau volume, or are higher order operators in the matter fields, and then irrelevant for the moduli stabilization rocedure. Although the power of the volume suppressing such corrections depends on the particular model, up to the mass level it is independent of the modular weight for the matter fields. This at least for the models studied here but we give arguments to expect the same in general. These claims are checked through numerical examples. We discuss how the factorizable models present a context where despite the lack of a hierarchy with the supersymmetry breaking scale, the effective theory still has a supersymmetric description. This can be understood from the fact that it is possible to find vanishing solution for the auxiliary components of the fields being integrated out, independently of the remaining dynamics. Our results settle down the question on the reliability of the way the Dilaton and Complex structure are treated in type-IIB compactifications with large compact manifold volumina.Comment: 23 pages + 2 appendices (38 pages total). v2: minor improvements, typos fixed. Version published in JHE

    The moduli problem at the perturbative level

    Full text link
    Moduli fields generically produce strong dark matter -- radiation and baryon -- radiation isocurvature perturbations through their decay if they remain light during inflation. We show that existing upper bounds on the magnitude of such fluctuations can thus be translated into stringent constraints on the moduli parameter space m_\sigma (modulus mass) -- \sigma_{inf} (modulus vacuum expectation value at the end of inflation). These constraints are complementary to previously existing bounds so that the moduli problem becomes worse at the perturbative level. In particular, if the inflationary scale H_{inf}~10^{13} GeV, particle physics scenarios which predict high moduli masses m_\sigma > 10-100 TeV are plagued by the perturbative moduli problem, even though they evade big-bang nucleosynthesis constraints.Comment: 4 pages, 3 figures (revtex) -- v2: an important correction on the amplitude/transfer of isocurvature modes at the end of inflation, typos corrected, references added, basic result unchange

    "Big" Divisor D3/D7 Swiss Cheese Phenomenology

    Full text link
    We review progress made over the past couple of years in the field of Swiss Cheese Phenomenology involving a mobile space-time filling D3-brane and stack(s) of fluxed D7-branes wrapping the "big" (as opposed to the "small") divisor in (the orientifold of a) Swiss-Cheese Calabi-Yau. The topics reviewed include reconciliation of large volume cosmology and phenomenology, evaluation of soft supersymmetry breaking parameters, one-loop RG-flow equations' solutions for scalar masses, obtaining fermionic (possibly first two generations' quarks/leptons) mass scales in the O(MeV-GeV)-regime as well as (first two generations') neutrino masses (and their one-loop RG flow) of around an eV. The heavy sparticles and the light fermions indicate the possibility of "split SUSY" large volume scenario.Comment: Invited review for MPLA, 14 pages, LaTe

    Dark Radiation and Dark Matter in Large Volume Compactifications

    Full text link
    We argue that dark radiation is naturally generated from the decay of the overall volume modulus in the LARGE volume scenario. We consider both sequestered and non-sequestered cases, and find that the axionic superpartner of the modulus is produced by the modulus decay and it can account for the dark radiation suggested by observations, while the modulus decay through the Giudice-Masiero term gives the dominant contribution to the total decay rate. In the sequestered case, the lightest supersymmetric particles produced by the modulus decay can naturally account for the observed dark matter density. In the non-sequestered case, on the other hand, the supersymmetric particles are not produced by the modulus decay, since the soft masses are of order the heavy gravitino mass. The QCD axion will then be a plausible dark matter candidate.Comment: 27 pages, 4 figures; version 3: version published in JHE

    LARGE Volume String Compactifications at Finite Temperature

    Full text link
    We present a detailed study of the finite-temperature behaviour of the LARGE Volume type IIB flux compactifications. We show that certain moduli can thermalise at high temperatures. Despite that, their contribution to the finite-temperature effective potential is always negligible and the latter has a runaway behaviour. We compute the maximal temperature TmaxT_{max}, above which the internal space decompactifies, as well as the temperature TT_*, that is reached after the decay of the heaviest moduli. The natural constraint T<TmaxT_*<T_{max} implies a lower bound on the allowed values of the internal volume V\mathcal{V}. We find that this restriction rules out a significant range of values corresponding to smaller volumes of the order V104ls6\mathcal{V}\sim 10^{4}l_s^6, which lead to standard GUT theories. Instead, the bound favours values of the order V1015ls6\mathcal{V}\sim 10^{15}l_s^6, which lead to TeV scale SUSY desirable for solving the hierarchy problem. Moreover, our result favours low-energy inflationary scenarios with density perturbations generated by a field, which is not the inflaton. In such a scenario, one could achieve both inflation and TeV-scale SUSY, although gravity waves would not be observable. Finally, we pose a two-fold challenge for the solution of the cosmological moduli problem. First, we show that the heavy moduli decay before they can begin to dominate the energy density of the Universe. Hence they are not able to dilute any unwanted relics. And second, we argue that, in order to obtain thermal inflation in the closed string moduli sector, one needs to go beyond the present EFT description.Comment: 54 pages + appendix, 5 figures; v2: minor corrections, references and footnotes added, version published on JCA

    Young stars at large distances from the galactic plane: mechanisms of formation

    Get PDF
    We have collected from the literature a list of early-type stars, situated at large distances from the galactic plane, for which evidence of youth seems convincing. We discuss two possible formation mechanisms for these stars: ejection from the plane by dynamical interactions within small clusters, and formation away from the plane, via induced shocks created by spiral density waves. We identify the stars that could be explained by each mechanism. We conclude that the ejection mechanism can account for about two thirds of the stars, while a combination of star formation at z = 500-800 pc from the plane and ejection, can account for 90 percent of these stars. Neither mechanism, nor both together, can explain the most extreme examples.Comment: 6 pages, No figures. Sixth Pacific Rim Conference on Stellar Astrophysics - A tribute to Helmut Abt, (Kluwer

    Torsion formulation of gravity

    Get PDF
    We make it precise what it means to have a connection with torsion as solution of the Einstein equations. While locally the theory remains the same, the new formulation allows for topologies that would have been excluded in the standard formulation of gravity. In this formulation it is possible to couple arbitrary torsion to gauge fields without breaking the gauge invariance.Comment: AMS-LaTeX, 25 pages. Appendices have been eliminated and the necessary concepts have been inroduced in the text. We have added some reference
    corecore