15 research outputs found
Reliability of the TekScan MatScan® system for the measurement of plantar forces and pressures during barefoot level walking in healthy adults
<p>Abstract</p> <p>Background</p> <p>Plantar pressure systems are increasingly being used to evaluate foot function in both research settings and in clinical practice. The purpose of this study was to investigate the reliability of the TekScan MatScan<sup>® </sup>system in assessing plantar forces and pressures during barefoot level walking.</p> <p>Methods</p> <p>Thirty participants were assessed for the reliability of measurements taken one week apart for the variables maximum force, peak pressure and average pressure. The following seven regions of the foot were investigated; heel, midfoot, 3<sup>rd</sup>-5<sup>th </sup>metatarsophalangeal joint, 2<sup>nd </sup>metatarsophalangeal joint, 1<sup>st </sup>metatarsophalangeal joint, hallux and the lesser toes.</p> <p>Results</p> <p>Reliability was assessed using both the mean and the median values of three repeated trials. The system displayed moderate to good reliability of mean and median calculations for the three analysed variables across all seven regions, as indicated by intra-class correlation coefficients ranging from 0.44 to 0.95 for the mean and 0.54 to 0.97 for the median, and coefficients of variation ranging from 5 to 20% for the mean and 3 to 23% for the median. Selecting the median value of three repeated trials yielded slightly more reliable results than the mean.</p> <p>Conclusions</p> <p>These findings indicate that the TekScan MatScan<sup>® </sup>system demonstrates generally moderate to good reliability.</p
Total conversion coefficients with a sum-coincidence NaI spectrometer
This article does not have an abstract
Supplementary Material for: A Prediction Model for Falls in Community-Dwelling Older Adults in Podiatry Practices
Introduction: Falls are a worldwide health problem among community-dwelling older adults. Emerging evidence suggests that foot problems increase the risk of falling, so the podiatrist may be crucial in detecting foot-related fall risk. However, there is no screening tool available which can be used in podiatry practice. The predictive value of existing tools is limited, and the implementation is poor. The development of risk models for specific clinical populations might increase the prediction accuracy and implementation. Therefore, the aim of this study was to develop and internally validate an easily applicable clinical prediction model (CPM) that can be used in podiatry practice to predict falls in community-dwelling older adults with foot (-related) problems. Methods: This was a prospective study including community-dwelling older adults (≥65 years) visiting podiatry practices. General fall-risk variables, and foot-related and function-related variables were considered as predictors for the occurrence of falls during the 12-month follow-up. Logistic regression analysis was used for model building, and internal validation was done by bootstrap resampling. Results: 407 participants were analyzed; the event rate was 33.4%. The final model included fall history in the previous year, unsteady while standing and walking, plantarflexor strength of the lesser toes, and gait speed. The area under the receiver operating characteristic curve was 0.71 (95% CI: 0.66–0.76) in the sample and estimated as 0.65 after shrinkage. Conclusion: A CPM based on fall history in the previous year, feeling unsteady while standing and walking, decreased plantarflexor strength of the lesser toes, and reduced gait speed has acceptable accuracy to predict falls in our sample of podiatry community-dwelling older adults and is easily applicable in this setting. The accuracy of the model in clinical practice should be demonstrated through external validation of the model in a next study
An Early Islet Transcriptional Signature Is Associated With Local Inflammation in Autoimmune Diabetes
Identifying the early islet cellular processes of autoimmune type 1 diabetes (T1D) in humans is challenging given the absence of symptoms during this period and the inaccessibility of the pancreas for sampling. In this article, we study temporal events in pancreatic islets in LEW.1WR1 rats, in which autoimmune diabetes can be induced with virus infection, by performing transcriptional analysis of islets harvested during the prediabetic period. Single-cell RNA-sequencing and differential expression analyses of islets from prediabetic rats reveal subsets of β- and α-cells under stress as evidenced by heightened expression, over time, of a transcriptional signature characterized by interferon-stimulated genes, chemokines including Cxcl10, major histocompatibility class I, and genes for the ubiquitin-proteasome system. Mononuclear phagocytes show increased expression of inflammatory markers. RNA-in situ hybridization of rat pancreatic tissue defines the spatial distribution of Cxcl10+ β- and α-cells and their association with CD8+ T cell infiltration, a hallmark of insulitis and islet destruction. Our studies define early islet transcriptional events during immune cell recruitment to islets and reveal spatial associations between stressed β- and α-cells and immune cells. Insights into such early processes can assist in the development of therapeutic and prevention strategies for T1D
Herpes Simplex Virus 1 Infection of Human Brain Organoids and Pancreatic Stem Cell-Islets Drives Organoid-Specific Transcripts Associated with Alzheimer’s Disease and Autoimmune Diseases
Viral infections leading to inflammation have been implicated in several common diseases, such as Alzheimer’s disease (AD) and type 1 diabetes (T1D). Of note, herpes simplex virus 1 (HSV-1) has been reported to be associated with AD. We sought to identify the transcriptomic changes due to HSV-1 infection and anti-viral drug (acyclovir, ACV) treatment of HSV-1 infection in dissociated cells from human cerebral organoids (dcOrgs) versus stem cell-derived pancreatic islets (sc-islets) to gain potential biological insights into the relevance of HSV-1-induced inflammation in AD and T1D. We observed that differentially expressed genes (DEGs) in HSV-1-infected sc-islets were enriched for genes associated with several autoimmune diseases, most significantly, T1D, but also rheumatoid arthritis, psoriasis, Crohn’s disease, and multiple sclerosis, whereas DEGs in HSV-1-infected dcOrgs were exclusively enriched for genes associated with AD. The ACV treatment of sc-islets was not as effective in rescuing transcript perturbations of autoimmune disease-associated genes. Finally, we identified gene ontology categories that were enriched for DEGs that were in common across, or unique to, viral treatment of dcOrgs and sc-islets, such as categories involved in the transferase complex, mitochondrial, and autophagy function. In addition, we compared transcriptomic signatures from HSV-1-infected sc-islets with sc-islets that were infected with the coxsackie B virus (CVB) that had been associated with T1D pathogenesis. Collectively, this study provides tissue-specific insights into the molecular effects of inflammation in AD and T1D
An early islet transcriptional signature is associated with local inflammation in autoimmune diabetes
Identifying the early islet cellular processes of autoimmune type 1 diabetes (T1D) in humans is challenging given the absence of symptoms during this period and the inaccessibility of the pancreas for sampling. Here, we study temporal events in pancreatic islets in LEW.1WR1 rats, in which autoimmune diabetes can be induced with virus infection, by performing transcriptional analysis of islets harvested during the pre-diabetic period. Single-cell RNA-Seq and differential expression analyses of islets from pre-diabetic rats reveal subsets of β and a cells under stress as evidenced by heightened expression, over time, of a transcriptional signature characterized by interferon-stimulated genes, chemokines including Cxcl10, major histocompatibility class I, and genes for the ubiquitin-proteasome system. Mononuclear phagocytes show increased expression of inflammatory markers. RNA-in situ hybridization of rat pancreatic tissue defines the spatial distribution of Cxcl10+ β and a cells and their association with CD8+ T cell infiltration, a hallmark of insulitis and islet destruction. Our studies define early islet transcriptional events during immune cell recruitment to islets and reveal spatial associations between stressed β and a cells and immune cells. Insights into such early processes can assist in the development of therapeutic and prevention strategies for T1D.</p
