1,246 research outputs found

    Sulfur-Oxidizing Symbionts without Canonical Genes for Autotrophic CO2 Fixation

    Get PDF
    Many animals and protists depend on symbiotic sulfur-oxidizing bacteria as their main food source. These bacteria use energy from oxidizing inorganic sulfur compounds to make biomass autotrophically from CO2, serving as primary producers for their hosts. Here we describe a clade of nonautotrophic sulfur-oxidizing symbionts, “Candidatus Kentron,” associated with marine ciliates. They lack genes for known autotrophic pathways and have a carbon stable isotope fingerprint heavier than other symbionts from similar habitats. Instead, they have the potential to oxidize sulfur to fuel the uptake of organic compounds for heterotrophic growth, a metabolic mode called chemolithoheterotrophy that is not found in other symbioses. Although several symbionts have heterotrophic features to supplement primary production, in Kentron they appear to supplant it entirely.Since the discovery of symbioses between sulfur-oxidizing (thiotrophic) bacteria and invertebrates at hydrothermal vents over 40 years ago, it has been assumed that autotrophic fixation of CO2 by the symbionts drives these nutritional associations. In this study, we investigated “Candidatus Kentron,” the clade of symbionts hosted by Kentrophoros, a diverse genus of ciliates which are found in marine coastal sediments around the world. Despite being the main food source for their hosts, Kentron bacteria lack the key canonical genes for any of the known pathways for autotrophic carbon fixation and have a carbon stable isotope fingerprint that is unlike other thiotrophic symbionts from similar habitats. Our genomic and transcriptomic analyses instead found metabolic features consistent with growth on organic carbon, especially organic and amino acids, for which they have abundant uptake transporters. All known thiotrophic symbionts have converged on using reduced sulfur to gain energy lithotrophically, but they are diverse in their carbon sources. Some clades are obligate autotrophs, while many are mixotrophs that can supplement autotrophic carbon fixation with heterotrophic capabilities similar to those in Kentron. Here we show that Kentron bacteria are the only thiotrophic symbionts that appear to be entirely heterotrophic, unlike all other thiotrophic symbionts studied to date, which possess either the Calvin-Benson-Bassham or the reverse tricarboxylic acid cycle for autotrophy

    The Fermi GBM Gamma-Ray Burst Spectral Catalog: Four Years Of Data

    Full text link
    In this catalog we present the updated set of spectral analyses of GRBs detected by the Fermi Gamma-Ray Burst Monitor (GBM) during its first four years of operation. It contains two types of spectra, time-integrated spectral fits and spectral fits at the brightest time bin, from 943 triggered GRBs. Four different spectral models were fitted to the data, resulting in a compendium of more than 7500 spectra. The analysis was performed similarly, but not identically to Goldstein et al. 2012. All 487 GRBs from the first two years have been re-fitted using the same methodology as that of the 456 GRBs in years three and four. We describe, in detail, our procedure and criteria for the analysis, and present the results in the form of parameter distributions both for the observer-frame and rest-frame quantities. The data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center (HEASARC).Comment: Accepted for publication in ApJ

    Rest-frame properties of 32 gamma-ray bursts observed by the Fermi Gamma-Ray Burst Monitor

    Full text link
    Aims: In this paper we study the main spectral and temporal properties of gamma-ray bursts (GRBs) observed by Fermi/GBM. We investigate these key properties of GRBs in the rest-frame of the progenitor and test for possible intra-parameter correlations to better understand the intrinsic nature of these events. Methods: Our sample comprises 32 GRBs with measured redshift that were observed by GBM until August 2010. 28 of them belong to the long-duration population and 4 events were classified as short/hard bursts. For all of these events we derive, where possible, the intrinsic peak energy in the νFν\nu F_{\nu} spectrum (\eprest), the duration in the rest-frame, defined as the time in which 90% of the burst fluence was observed (\tninetyrest) and the isotropic equivalent bolometric energy (\eiso). Results: The distribution of \eprest has mean and median values of 1.1 MeV and 750 keV, respectively. A log-normal fit to the sample of long bursts peaks at ~800 keV. No high-\ep population is found but the distribution is biased against low \ep values. We find the lowest possible \ep that GBM can recover to be ~ 15 keV. The \tninetyrest distribution of long GRBs peaks at ~10 s. The distribution of \eiso has mean and median values of 8.9×10528.9\times 10^{52} erg and 8.2×10528.2 \times 10^{52} erg, respectively. We confirm the tight correlation between \eprest and \eiso (Amati relation) and the one between \eprest and the 1-s peak luminosity (LpL_p) (Yonetoku relation). Additionally, we observe a parameter reconstruction effect, i.e. the low-energy power law index α\alpha gets softer when \ep is located at the lower end of the detector energy range. Moreover, we do not find any significant cosmic evolution of neither \eprest nor \tninetyrest.Comment: accepted by A&

    SGR J1550-5418 bursts detected with the Fermi Gamma-ray Burst Monitor during its most prolific activity

    Get PDF
    We have performed detailed temporal and time-integrated spectral analysis of 286 bursts from SGR J1550-5418 detected with the Fermi Gamma-ray Burst Monitor (GBM) in January 2009, resulting in the largest uniform sample of temporal and spectral properties of SGR J1550-5418 bursts. We have used the combination of broadband and high time-resolution data provided with GBM to perform statistical studies for the source properties. We determine the durations, emission times, duty cycles and rise times for all bursts, and find that they are typical of SGR bursts. We explore various models in our spectral analysis, and conclude that the spectra of SGR J1550-5418 bursts in the 8-200 keV band are equally well described by optically thin thermal bremsstrahlung (OTTB), a power law with an exponential cutoff (Comptonized model), and two black-body functions (BB+BB). In the spectral fits with the Comptonized model we find a mean power-law index of -0.92, close to the OTTB index of -1. We show that there is an anti-correlation between the Comptonized Epeak and the burst fluence and average flux. For the BB+BB fits we find that the fluences and emission areas of the two blackbody functions are correlated. The low-temperature BB has an emission area comparable to the neutron star surface area, independent of the temperature, while the high-temperature blackbody has a much smaller area and shows an anti-correlation between emission area and temperature. We compare the properties of these bursts with bursts observed from other SGR sources during extreme activations, and discuss the implications of our results in the context of magnetar burst models.Comment: 13 pages, 10 figures, 2 tables; minor changes, ApJ in pres

    Quasi-Periodic Pulsations in Solar Flares: new clues from the Fermi Gamma-Ray Burst Monitor

    Full text link
    In the last four decades it has been observed that solar flares show quasi-periodic pulsations (QPPs) from the lowest, i.e. radio, to the highest, i.e. gamma-ray, part of the electromagnetic spectrum. To this day, it is still unclear which mechanism creates such QPPs. In this paper, we analyze four bright solar flares which show compelling signatures of quasi-periodic behavior and were observed with the Gamma-Ray Burst Monitor (\gbm) onboard the Fermi satellite. Because GBM covers over 3 decades in energy (8 keV to 40 MeV) it can be a key instrument to understand the physical processes which drive solar flares. We tested for periodicity in the time series of the solar flares observed by GBM by applying a classical periodogram analysis. However, contrary to previous authors, we did not detrend the raw light curve before creating the power spectral density spectrum (PSD). To assess the significance of the frequencies we made use of a method which is commonly applied for X-ray binaries and Seyfert galaxies. This technique takes into account the underlying continuum of the PSD which for all of these sources has a P(f) ~ f^{-\alpha} dependence and is typically labeled red-noise. We checked the reliability of this technique by applying it to a solar flare which was observed by the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) which contains, besides any potential periodicity from the Sun, a 4 s rotational period due to the rotation of the spacecraft around its axis. While we do not find an intrinsic solar quasi-periodic pulsation we do reproduce the instrumental periodicity. Moreover, with the method adopted here, we do not detect significant QPPs in the four bright solar flares observed by GBM. We stress that for the purpose of such kind of analyses it is of uttermost importance to appropriately account for the red-noise component in the PSD of these astrophysical sources.Comment: accepted by A&

    Time-Resolved Spectroscopy of the 3 Brightest and Hardest Short Gamma-Ray Bursts Observed with the FGST Gamma-Ray Burst Monitor

    Full text link
    From July 2008 to October 2009, the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope (FGST) has detected 320 Gamma-Ray Bursts (GRBs). About 20% of these events are classified as short based on their T90 duration below 2 s. We present here for the first time time-resolved spectroscopy at timescales as short as 2 ms for the three brightest short GRBs observed with GBM. The time-integrated spectra of the events deviate from the Band function, indicating the existence of an additional spectral component, which can be fit by a power-law with index ~-1.5. The time-integrated Epeak values exceed 2 MeV for two of the bursts, and are well above the values observed in the brightest long GRBs. Their Epeak values and their low-energy power-law indices ({\alpha}) confirm that short GRBs are harder than long ones. We find that short GRBs are very similar to long ones, but with light curves contracted in time and with harder spectra stretched towards higher energies. In our time-resolved spectroscopy analysis, we find that the Epeak values range from a few tens of keV up to more than 6 MeV. In general, the hardness evolutions during the bursts follows their flux/intensity variations, similar to long bursts. However, we do not always see the Epeak leading the light-curve rises, and we confirm the zero/short average light-curve spectral lag below 1 MeV, already established for short GRBs. We also find that the time-resolved low-energy power-law indices of the Band function mostly violate the limits imposed by the synchrotron models for both slow and fast electron cooling and may require additional emission processes to explain the data. Finally, we interpreted these observations in the context of the current existing models and emission mechanisms for the prompt emission of GRBs.Comment: 14 pages, 10 figures, 9 tables, Accepted for publication in the Astrophysical Journal September, 23 2010 (Submitted May, 16 2010) Corrections: 1 reference updated, figure 10 captio

    Vicinal Surface with Langmuir Adsorption: A Decorated Restricted Solid-on-solid Model

    Full text link
    We study the vicinal surface of the restricted solid-on-solid model coupled with the Langmuir adsorbates which we regard as two-dimensional lattice gas without lateral interaction. The effect of the vapor pressure of the adsorbates in the environmental phase is taken into consideration through the chemical potential. We calculate the surface free energy ff, the adsorption coverage Θ\Theta, the step tension γ\gamma, and the step stiffness γ~\tilde{\gamma} by the transfer matrix method combined with the density-matrix algorithm. Detailed step-density-dependence of ff and Θ\Theta is obtained. We draw the roughening transition curve in the plane of the temperature and the chemical potential of adsorbates. We find the multi-reentrant roughening transition accompanying the inverse roughening phenomena. We also find quasi-reentrant behavior in the step tension.Comment: 7 pages, 12 figures (png format), RevTeX 3.1, submitted to Phys. Rev.

    Temporal Deconvolution study of Long and Short Gamma-Ray Burst Light curves

    Full text link
    The light curves of Gamma-Ray Bursts (GRBs) are believed to result from internal shocks reflecting the activity of the GRB central engine. Their temporal deconvolution can reveal potential differences in the properties of the central engines in the two populations of GRBs which are believed to originate from the deaths of massive stars (long) and from mergers of compact objects (short). We present here the results of the temporal analysis of 42 GRBs detected with the Gamma-ray Burst Monitor onboard the Fermi Gamma-ray Space Telescope. We deconvolved the profiles into pulses, which we fit with lognormal functions. The distributions of the pulse shape parameters and intervals between neighboring pulses are distinct for both burst types and also fit with lognormal functions. We have studied the evolution of these parameters in different energy bands and found that they differ between long and short bursts. We discuss the implications of the differences in the temporal properties of long and short bursts within the framework of the internal shock model for GRB prompt emission.Comment: 38 pages, 11 figure

    First-year Results of Broadband Spectroscopy of the Brightest Fermi-GBM Gamma-Ray Bursts

    Get PDF
    We present here our results of the temporal and spectral analysis of a sample of 52 bright and hard gamma-ray bursts (GRBs) observed with the Fermi Gamma-ray Burst Monitor (GBM) during its first year of operation (July 2008-July 2009). Our sample was selected from a total of 253 GBM GRBs based on each event peak count rate measured between 0.2 and 40MeV. The final sample comprised 34 long and 18 short GRBs. These numbers show that the GBM sample contains a much larger fraction of short GRBs, than the CGRO/BATSE data set, which we explain as the result of our (different) selection criteria and the improved GBM trigger algorithms, which favor collection of short, bright GRBs over BATSE. A first by-product of our selection methodology is the determination of a detection threshold from the GBM data alone, above which GRBs most likely will be detected in the MeV/GeV range with the Large Area Telescope (LAT) onboard Fermi. This predictor will be very useful for future multiwavelength GRB follow ups with ground and space based observatories. Further we have estimated the burst durations up to 10MeV and for the first time expanded the duration-energy relationship in the GRB light curves to high energies. We confirm that GRB durations decline with energy as a power law with index approximately -0.4, as was found earlier with the BATSE data and we also notice evidence of a possible cutoff or break at higher energies. Finally, we performed time-integrated spectral analysis of all 52 bursts and compared their spectral parameters with those obtained with the larger data sample of the BATSE data. We find that the two parameter data sets are similar and confirm that short GRBs are in general harder than longer ones.Comment: 40 pages, 11 figures, 3 tables, Submitted to Ap
    corecore