47 research outputs found
The Antidiabetic Drug Ciglitazone Induces High Grade Bladder Cancer Cells Apoptosis through the Up-Regulation of TRAIL
International audienceBACKGROUND: Ciglitazone belongs to the thiazolidinediones class of antidiabetic drug family and is a high-affinity ligand for the Peroxisome Proliferator-Activated Receptor γ (PPARγ). Apart from its antidiabetic activity, this molecule shows antineoplastic effectiveness in numerous cancer cell lines. METHODOLOGY/PRINCIPAL FINDINGS: Using RT4 (derived from a well differentiated grade I papillary tumor) and T24 (derived from an undifferentiated grade III carcinoma) bladder cancer cells, we investigated the potential of ciglitazone to induce apoptotic cell death and characterized the molecular mechanisms involved. In RT4 cells, the drug induced G2/M cell cycle arrest characterized by an overexpression of p53, p21(waf1/CIP1) and p27(Kip1) in concomitance with a decrease of cyclin B1. On the contrary, in T24 cells, it triggered apoptosis via extrinsic and intrinsic pathways. Cell cycle arrest and induction of apoptosis occurred at high concentrations through PPARγ activation-independent pathways. We show that in vivo treatment of nude mice by ciglitazone inhibits high grade bladder cancer xenograft development. We identified a novel mechanism by which ciglitazone kills cancer cells. Ciglitazone up-regulated soluble and membrane-bound TRAIL and let TRAIL-resistant T24 cells to respond to TRAIL through caspase activation, death receptor signalling pathway and Bid cleavage. We provided evidence that TRAIL-induced apoptosis is partially driven by ciglitazone-mediated down-regulation of c-FLIP and survivin protein levels through a proteasome-dependent degradation mechanism. CONCLUSIONS/SIGNIFICANCE: Therefore, ciglitazone could be clinically relevant as chemopreventive or therapeutic agent for the treatment of TRAIL-refractory high grade urothelial cancers
Determination par Spectrometrie de Vibration des Fonctions de Correlation Orientationnelles Monomoleculaires dans les Liquides
The crystal structure of oxylipin-conjugated barley LTP1 highlights the unique plasticity of the hydrophobic cavity of these plant lipid-binding proteins
International audienc
The crystal structure of oxylipin-conjugated barley LTP1 highlights the unique plasticity of the hydrophobic cavity of these plant lipid-binding proteins
Three-dimensional structure of two crystal forms of FabR19.9 from a monoclonal anti-arsonate antibody.
Méthode d'étude, par spectroscopie infrarouge, de la basicité comparée d'un polyacrylamide N,N-disubstitué et d'amides modèles représentant son motif de répétition
Three-dimensional structure of Fab R19.9, a monoclonal murine antibody specific for the p-azobenzenearsonate group.
The crystal structure of Fab R19.9, derived from an anti-p-azobenzenearsonate monoclonal antibody, has been determined and refined to 2.8-A resolution by x-ray crystallographic techniques. Monoclonal antibody R19.9 (IgG2b kappa) shares some idiotopes with a major idiotype (CRIA) associated with A/J anti-p-azobenzenearsonate antibodies. The amino acid sequences of the variable (V) parts of the heavy (VH) and light (VL) polypeptide chains of monoclonal antibody R19.9 were determined through nucleotide sequencing of their mRNAs. The VL region is very similar to that of CRIA-positive anti-p-azobenzenearsonate antibodies as is VH, except for its third complementarity-determining region, which is three amino acids longer; it makes a loop, unique to R19.9, that protrudes into the solvent. A large number of tyrosine residues in the complementarity-determining region of VH and VL, with their side chains pointing towards the solvent, may have an important function in antigen binding
