291,784 research outputs found
Exciton Hierarchies in Gapped Carbon Nanotubes
We present evidence that the strong electron-electron interactions in gapped
carbon nanotubes lead to finite hierarchies of excitons within a given nanotube
subband. We study these hierarchies by employing a field theoretic reduction of
the gapped carbon nanotube permitting electron-electron interactions to be
treated exactly. We analyze this reduction by employing a Wilsonian-like
numerical renormalization group. We are so able to determine the gap ratios of
the one-photon excitons as a function of the effective strength of
interactions. We also determine within the same subband the gaps of the
two-photon excitons, the single particle gaps, as well as a subset of the dark
excitons. The strong electron-electron interactions in addition lead to
strongly renormalized dispersion relations where the consequences of
spin-charge separation can be readily observed.Comment: 8 pages, 4 figure
Effect of Liquid Surface Turbulent Motion on the Vapor Condensation in a Mixing Tank
The effect of liquid surface motion on the vapor condensation in a tank mixed by an axial turbulent jet is numerically investigated. The average value (over the interface area) of the root-mean-squared (rms) turbulent velocity at the interface is shown to be linearly increasing with decreasing liquid height and increasing jet diameter for a given tank size. The average rms turbulent velocity is incorporated in Brown et al. (1990) condensation correlation to predict the condensation of vapor on a liquid surface. The results are in good agreement with available condensation data
Self-pressurization of a spherical liquid hydrogen storage tank in a microgravity environment
Thermal stratification and self-pressurization of partially filled liquid hydrogen (LH2) storage tanks under microgravity condition is studied theoretically. A spherical tank is subjected to a uniform and constant wall heat flux. It is assumed that a vapor bubble is located in the tank center such that the liquid-vapor interface and tank wall form two concentric spheres. This vapor bubble represents an idealized configuration of a wetting fluid in microgravity conditions. Dimensionless mass and energy conservation equations for both vapor and liquid regions are numerically solved. Coordinate transformation is used to capture the interface location which changes due to liquid thermal expansion, vapor compression, and mass transfer at liquid-vapor interface. The effects of tank size, liquid fill level, and wall heat flux on the pressure rise and thermal stratification are studied. Liquid thermal expansion tends to cause vapor condensation and wall heat flux tends to cause liquid evaporation at the interface. The combined effects determine the direction of mass transfer at the interface. Liquid superheat increases with increasing wall heat flux and liquid fill level and approaches an asymptotic value
Fluctuation-induced tunneling conduction through RuO nanowire contacts
A good understanding of the electronic conduction processes through
nanocontacts is a crucial step for the implementation of functional
nanoelectronic devices. We have studied the current-voltage (-)
characteristics of nanocontacts between single metallic RuO nanowires (NWs)
and contacting Au electrodes which were pre-patterned by simple
photolithography. Both the temperature behavior of contact resistance in the
low-bias voltage ohmic regime and the - curves in the high-bias voltage
non-ohmic regime have been investigated. We found that the electronic
conduction processes in the wide temperature interval 1--300 K can be well
described by the fluctuation-induced tunneling (FIT) conduction theory. Taken
together with our previous work (Lin {\it et al.}, Nanotechnology {\bf 19},
365201 (2008)) where the nanocontacts were fabricated by delicate electron-beam
lithography, our study demonstrates the general validity of the FIT model in
characterizing electronic nanocontacts.Comment: 6 pages, 5 figure
Spin Distribution in Diffraction Pattern of Two-dimensional Electron Gas with Spin-orbit Coupling
Spin distribution in the diffraction pattern of two-dimensional electron gas
by a split gate and a quantum point contact is computed in the presence of the
spin-orbit coupling. After diffracted, the component of spin perpendicular to
the two-dimensional plane can be generated up to 0.42 . The non-trivial
spin distribution is the consequence of a pure spin current in the transverse
direction generated by the diffraction. The direction of the spin current can
be controlled by tuning the chemical potential.Comment: 9 page
- …
