16,594 research outputs found

    Quantum Key Distribution with Blind Polarization Bases

    Full text link
    We propose a new quantum key distribution scheme that uses the blind polarization basis. In our scheme the sender and the receiver share key information by exchanging qubits with arbitrary polarization angles without basis reconciliation. As only random polarizations are transmitted, our protocol is secure even when a key is embedded in a not-so-weak coherent-state pulse. We show its security against the photon number splitting attack and the impersonation attack.Comment: Security has been improved upon referee's comment. 4 pages and 2 figure

    Conformal anomaly and the vector coupling in dense matter

    Full text link
    We construct an effective chiral Lagrangian for hadrons implemented by the conformal invariance and discuss the properties of nuclear matter at high density. The model is formulated based on two alternative assignment, "naive" and mirror, of chirality to the nucleons. It is shown that taking the dilaton limit, in which the mended symmetry of Weinberg is manifest, the vector-meson Yukawa coupling becomes suppressed and the symmetry energy becomes softer as one approaches the chiral phase transition. This leads to softer equations of state (EoS) and could accommodate the EoS without any exotica consistent with the recent measurement of a 1.97±0.04M1.97 \pm 0.04\,M_\odot neutron star.Comment: v2:10 pages, 2 figures, typos corrected, a rough estimate of m0 adde

    Low-lying excitations around a single vortex in a d-wave superconductor

    Full text link
    A full quantum-mechanical treatment of the Bogoliubov-de Gennes equation for a single vortex in a d-wave superconductor is presented. First, we find low-energy states extended in four diagonal directions, which have no counterpart in a vortex of s-wave superconductors. The four-fold symmetry is due to 'quantum effect', which is enhanced when pFξp_{F}\xi is small. Second, for pFξ1p_{F}\xi \sim 1, a peak with a large energy gap E0ΔE_{0}\sim \Delta is found in the density of states, which is due to the formation of the lowest bound states.Comment: 7pages, Revte

    Quantum State Discrimination with General Figures of Merit

    Full text link
    We solve the problem of quantum state discrimination with "general (symmetric) figures of merit" for an even number of symmetric quantum bits with use of the no-signaling principle. It turns out that conditional probability has the same form for any figure of merit. Optimal measurement and corresponding conditional probability are the same for any monotonous figure of merit.Comment: 5 pages, 2 figure

    Threshold electric field in unconventional density waves

    Full text link
    As it is well known most of charge density wave (CDW) and spin density wave (SDW) exhibit the nonlinear transport with well defined threshold electric field E_T. Here we study theoretically the threshold electric field of unconventional density waves. We find that the threshold field increases monotonically with temperature without divergent behaviour at T_c, unlike the one in conventional CDW. The present result in the 3D weak pinning limit appears to describe rather well the threshold electric field observed recently in the low-temperature phase (LTP) of alpha-(BEDT-TTF)_2KHg(SCN)_4.Comment: 4 pages, 2 figure

    Emergent modular neural control drives coordinated motor actions.

    Get PDF
    A remarkable feature of motor control is the ability to coordinate movements across distinct body parts into a consistent, skilled action. To reach and grasp an object, 'gross' arm and 'fine' dexterous movements must be coordinated as a single action. How the nervous system achieves this coordination is currently unknown. One possibility is that, with training, gross and fine movements are co-optimized to produce a coordinated action; alternatively, gross and fine movements may be modularly refined to function together. To address this question, we recorded neural activity in the primary motor cortex and dorsolateral striatum during reach-to-grasp skill learning in rats. During learning, the refinement of fine and gross movements was behaviorally and neurally dissociable. Furthermore, inactivation of the primary motor cortex and dorsolateral striatum had distinct effects on skilled fine and gross movements. Our results indicate that skilled movement coordination is achieved through emergent modular neural control
    corecore