9,333 research outputs found
Supernova 2009kf: An Ultraviolet Bright Type IIP Supernova Discovered with Pan-STARRS 1 and GALEX
We present photometric and spectroscopic observations of a luminous Type IIP Supernova (SN) 2009kf discovered by the Pan-STARRS 1 (PS1) survey and also detected by the Galaxy Evolution Explorer. The SN shows a plateau in its optical and bolometric light curves, lasting approximately 70 days in the rest frame, with an absolute magnitude of M_V = -18.4 mag. The P-Cygni profiles of hydrogen indicate expansion velocities of 9000 km s^(-1) at 61 days after discovery which is extremely high for a Type IIP SN. SN 2009kf is also remarkably bright in the near-ultraviolet (NUV) and shows a slow evolution 10-20 days after optical discovery. The NUV and optical luminosity at these epochs can be modeled with a blackbody with a hot effective temperature (T ~ 16,000 K) and a large radius (R ~ 1 × 10^(15) cm). The bright bolometric and NUV luminosity, the light curve peak and plateau duration, the high velocities, and temperatures suggest that 2009kf is a Type IIP SN powered by a larger than normal explosion energy. Recently discovered high-z SNe (0.7 < z < 2.3) have been assumed to be IIn SNe, with the bright UV luminosities due to the interaction of SN ejecta with a dense circumstellar medium. UV-bright SNe similar to SN 2009kf could also account for these high-z events, and its absolute magnitude M_(NUV) = -21.5 ± 0.5 mag suggests such SNe could be discovered out to z ~ 2.5 in the PS1 survey
The Detection of Outflows in the IR-Quiet Molecular Core NGC 6334 I(North)
We find strong evidence for outflows originating in the dense molecular core
NGC 6334 I(North): a 1000 Msol molecular core distinguished by its lack of HII
regions and mid-IR emission. New observations were obtained of the SiO 2-1 and
5-4 lines with the SEST 15-m telescope and the H2 (1-0) S(1) line with the ESO
2.2-m telescope. The line profiles of the SiO transitions show broad wings
extending from -50 to 40 km/s, and spatial maps of the line wing emission
exhibit a bipolar morphology with the peaks of the red and blue wing separated
by 30". The estimated mass loss rate of the outflow is comparable to those for
young intermediate to high-mass stars. The near-IR images show eight knots of
H2 emission. Five of the knots form a linear chain which is displaced from the
axis of the SiO outflow; these knots may trace shock excited gas along the path
of a second, highly collimated outflow. We propose that I(N) is a rare example
of a molecular core in an early stage of cluster formation.Comment: 4 pages, LaTeX, 3 ps figures, accepted by ApJ
Spin Pumping of Current in Non-Uniform Conducting Magnets
Using irreversible thermodynamics we show that current-induced spin transfer
torque within a magnetic domain implies spin pumping of current within that
domain. This has experimental implications for samples both with conducting
leads and that are electrically isolated. These results are obtained by
deriving the dynamical equations for two models of non-uniform conducting
magnets: (1) a generic conducting magnet, with net conduction electron density
n and net magnetization ; and (2) a two-band magnet, with up and down
spins each providing conduction and magnetism. For both models, in regions
where the equilibrium magnetization is non-uniform, voltage gradients can drive
adiabatic and non-adiabatic bulk spin torques. Onsager relations then ensure
that magnetic torques likewise drive adiabatic and non-adiabatic currents --
what we call bulk spin pumping. For a given amount of adiabatic and
non-adiabatic spin torque, the two models yield similar but distinct results
for the bulk spin pumping, thus distinguishing the two models. As in the recent
spin-Berry phase study by Barnes and Maekawa, we find that within a domain wall
the ratio of the effective emf to the magnetic field is approximately given by
, where P is the spin polarization. The adiabatic spin torque
and spin pumping terms are shown to be dissipative in nature.Comment: 13 pages in pdf format; 1 figur
Normal Breathing Pattern and Arterial Blood Gases in Awake and Sleeping Goats after Near Total Destruction of the Presumed Pre-Bötzinger Complex and the Surrounding Region
Abrupt neurotoxic destruction of \u3e70% of the pre-Bötzinger complex (preBötzC) in awake goats results in respiratory and cardiac failure (Wenninger JM, Pan LG, Klum L, Leekley T, Bastastic J, Hodges MR, Feroah TR, Davis S, Forster HV. J Appl Physiol 97: 1629–1636, 2004). However, in reduced preparations, rhythmic respiratory activity has been found in other areas of the brain stem (Huang Q, St. John WM. J Appl Physiol 64: 1405–1411, 1988; Janczewski WA, Feldman JL. J Physiol 570: 407–420, 2006; Lieske SP, Thoby-Brisson M, Telgkamo P, Ramierz JM. Nature Neurosci 3: 600–607, 2000; St. John WM, Bledsoe TA. J Appl Physiol 59: 684–690, 1985); thus we hypothesized that, when the preBötzC is destroyed incrementally over weeks, time-dependent plasticity within the respiratory network will result in a respiratory rhythm capable of maintaining normal blood gases. Microtubules were bilaterally implanted into the presumed preBötzC of seven goats. After recovery from surgery, studies were completed to establish baseline values for respiratory parameters. At weekly intervals, increasing volumes (in order 0.5, 1, 5, and 10 μl) of ibotenic acid (IA; 50 mM) were then injected into the preBötzC. All IA injections resulted in an acute tachypnea and dysrhythmia featuring augmented breaths, apneas, and increased breath-to-breath variation in breathing. In studies at night, apneas were nearly all central and occurred in the awake state. Breath-to-breath variation in breathing was greater (P \u3c 0.05) during wakefulness than during non-rapid eye movement sleep. However, one week after the final IA injection, the breathing pattern, breath-to-breath variation, and arterial blood gases and pH were unchanged from baseline, but there was a 20% decrease in respiratory frequency (f) and CO2 sensitivity (P \u3c 0.05), as well as a 40% decrease in the ventilatory response to hypoxia (P \u3c 0.001). In subsequent histological analysis of the presumed preBötzC region of lesioned goats, it was determined that there was a 90 and 92% reduction from control goats in total and neurokinin-1 receptor neurons, respectively. Therefore, it was concluded that 1) the dysrhythmic effects on breathing are state dependent; and 2) after incremental, near total destruction of the presumed preBötzC region, time-dependent plasticity within the respiratory network provides a rhythm capable of sustaining normal arterial blood gases
1/f spectrum and memory function analysis of solvation dynamics in a room-temperature ionic liquid
To understand the non-exponential relaxation associated with solvation
dynamics in the ionic liquid 1-ethyl-3-methylimidazolium hexafluorophosphate,
we study power spectra of the fluctuating Franck-Condon energy gap of a
diatomic probe solute via molecular dynamics simulations. Results show 1/f
dependence in a wide frequency range over 2 to 3 decades, indicating
distributed relaxation times. We analyze the memory function and solvation time
in the framework of the generalized Langevin equation using a simple model
description for the power spectrum. It is found that the crossover frequency
toward the white noise plateau is directly related to the time scale for the
memory function and thus the solvation time. Specifically, the low crossover
frequency observed in the ionic liquid leads to a slowly-decaying tail in its
memory function and long solvation time. By contrast, acetonitrile
characterized by a high crossover frequency and (near) absence of 1/f behavior
in its power spectra shows fast relaxation of the memory function and
single-exponential decay of solvation dynamics in the long-time regime.Comment: 10 pages, 4 figure
Participatory cotton breeding for organic and low input farming in Central India
Up to 80% of world’s organic cotton is produced in India. However, involved producers are facing increased difficulties to find suitable cultivars. Few hybrids selected for high input farming and genetically-modified (GM) cotton, which is explicitly excluded in organic farming, are presently dominating the Indian seed market. In addition farmers have lost their traditional knowledge on seed production and hybrid seed needs to be purchased each season
Mid-Infrared Imaging of NGC 6334 I
We present high-resolution (<0.5") mid-infrared Keck II images of individual
sources in the central region of NGC 6334 I. We compare these images to images
at a variety of other wavelengths from the near infrared to cm radio continuum
and speculate on the nature of the NGC 6334 I sources. We assert that the
cometary shape of the UCHII region here, NGC 6334 F, is due to a champagne-like
flow from a source on the edge of a molecular clump and not a due to a bow
shock caused by the supersonic motion of the UCHII region through the
interstellar medium. The mid-infrared emission in concentrated into an arc of
dust that define the boundary between the UCHII region and the molecular clump.
This dust arc contains a majority of the masers in the region. We discuss the
nature of the four near-infrared sources associated with IRS-I 1, and suggest
that one of the sources, IRS1E, is responsible for the heating and ionizing of
the UCHII region and the mid-infrared dust arc. Infrared source IRS-I 2, which
has been thought to be a circumstellar disk associated with a linear
distribution of methanol masers, is found not to be directly coincident with
the masers and elongated at a much different position angle. IRS-I 3 is found
to be a extended source of mid-infrared emission coming from a cluster of young
dusty sources seen in the near-infrared.Comment: Accepted for publication by the Astrophysical Journal, 27 pages, 9
figure
Aspects of the Noisy Burgers Equation
The noisy Burgers equation describing for example the growth of an interface
subject to noise is one of the simplest model governing an intrinsically
nonequilibrium problem. In one dimension this equation is analyzed by means of
the Martin-Siggia-Rose technique. In a canonical formulation the morphology and
scaling behavior are accessed by a principle of least action in the weak noise
limit. The growth morphology is characterized by a dilute gas of nonlinear
soliton modes with gapless dispersion law with exponent z=3/2 and a superposed
gas of diffusive modes with a gap. The scaling exponents and a heuristic
expression for the scaling function follow from a spectral representation.Comment: 23 pages,LAMUPHYS LaTeX-file (Springer), 13 figures, and 1 table, to
appear in the Proceedings of the XI Max Born Symposium on "Anomalous
Diffusion: From Basics to Applications", May 20-24, 1998, Ladek Zdroj, Polan
Dynamic correlations in stochastic rotation dynamics
The dynamic structure factor, vorticity and entropy density dynamic
correlation functions are measured for Stochastic Rotation Dynamics (SRD), a
particle based algorithm for fluctuating fluids. This allows us to obtain
unbiased values for the longitudinal transport coefficients such as thermal
diffusivity and bulk viscosity. The results are in good agreement with earlier
numerical and theoretical results, and it is shown for the first time that the
bulk viscosity is indeed zero for this algorithm. In addition, corrections to
the self-diffusion coefficient and shear viscosity arising from the breakdown
of the molecular chaos approximation at small mean free paths are analyzed. In
addition to deriving the form of the leading correlation corrections to these
transport coefficients, the probabilities that two and three particles remain
collision partners for consecutive time steps are derived analytically in the
limit of small mean free path. The results of this paper verify that we have an
excellent understanding of the SRD algorithm at the kinetic level and that
analytic expressions for the transport coefficients derived elsewhere do indeed
provide a very accurate description of the SRD fluid.Comment: 33 pages including 16 figure
- …
