2,059 research outputs found
High-Order Multipole Radiation from Quantum Hall States in Dirac Materials
We investigate the optical response of strongly disordered quantum Hall
states in two-dimensional Dirac materials and find qualitatively different
effects in the radiation properties of the bulk versus the edge. We show that
the far-field radiation from the edge is characterized by large multipole
moments (> 50) due to the efficient transfer of angular momentum from the
electrons into the scattered light. The maximum multipole transition moment is
a direct measure of the coherence length of the edge states. Accessing these
multipole transitions would provide new tools for optical spectroscopy and
control of quantum Hall edge states. On the other hand, the far-field radiation
from the bulk appears as random dipole emission with spectral properties that
vary with the local disorder potential. We determine the conditions under which
this bulk radiation can be used to image the disorder landscape. Such optical
measurements can probe sub-micron length scales over large areas and provide
complementary information to scanning probe techniques. Spatially resolving
this bulk radiation would serve as a novel probe of the percolation transition
near half-filling.Comment: v2: 8 pages, 4 figure
Photon Antibunching in the Photoluminescence Spectra of a Single Carbon Nanotube
We report the first observation of photon antibunching in the
photoluminescence from single carbon nanotubes. The emergence of a fast
luminescence decay component under strong optical excitation indicates that
Auger processes are partially responsible for inhibiting two-photon generation.
Additionally, the presence of exciton localization at low temperatures ensures
that nanotubes emit photons predominantly one by one. The fact that multiphoton
emission probability can be smaller than 5% suggests that carbon nanotubes
could be used as a source of single photons for applications in quantum
cryptography.Comment: content as publishe
Observation of Faraday rotation from a single confined spin
Ability to read-out the state of a single confined spin lies at the heart of
solid-state quantum information processing. While all-optical spin measurements
using Faraday rotation has been successfully implemented in ensembles of
semiconductor spins, read-out of a single semiconductor spin has only been
achieved using transport measurements based on spin-charge conversion. Here, we
demonstrate an all-optical dispersive measurement of the spin-state of a single
electron trapped in a semiconductor quantum dot. We obtain information on the
spin state through conditional Faraday rotation of a spectrally detuned optical
field, induced by the polarization- and spin-selective trion (charged quantum
dot) transitions. To assess the sensitivity of the technique, we use an
independent resonant laser for spin-state preparation. An all-optical
dispersive measurement on single spins has the important advantage of
channeling the measurement back-action onto a conjugate observable, thereby
allowing for repetitive or continuous quantum nondemolition (QND) read-out of
the spin-state. We infer from our results that there are of order unity
back-action induced spin-flip Raman scattering events within our measurement
timescale. Therefore, straightforward improvements such as the use of a
solid-immersion lens and higher efficiency detectors would allow for
back-action evading spin measurements, without the need for a cavity
A High-resolution Scintillating Fiber Tracker With Silicon Photomultiplier Array Readout
We present prototype modules for a tracking detector consisting of multiple
layers of 0.25 mm diameter scintillating fibers that are read out by linear
arrays of silicon photomultipliers. The module production process is described
and measurements of the key properties for both the fibers and the readout
devices are shown. Five modules have been subjected to a 12 GeV/c proton/pion
testbeam at CERN. A spatial resolution of 0.05 mm and light yields exceeding 20
detected photons per minimum ionizing particle have been achieved, at a
tracking efficiency of more than 98.5%. Possible techniques for further
improvement of the spatial resolution are discussed.Comment: 31 pages, 27 figures, pre-print version of an article published in
Nuclear Instruments and Methods in Physics Research Section A, Vol. 62
Estimation of GRB detection by FiberGLAST
FiberGLAST is one of several instrument concepts being developed for possible inclusion as the primary Gamma-ray Large Area Space Telescope (GLAST) instrument. The predicted FiberGLAST effective area is more than 12,000 cm2 for energies between 30 MeV and 300 GeV, with a field of view that is essentially flat from 0°–80°. The detector will achieve a sensitivity more than 10 times that of EGRET. We present results of simulations that illustrate the sensitivity of FiberGLAST for the detection of gamma-ray bursts
Development and testing of a fiber/multianode photomultiplier system for use on FiberGLAST
A scintillating fiber detector is currently being studied for the NASA Gamma-Ray Large Area Space Telescope (GLAST) mission. This detector utilizes modules composed of a thin converter sheet followed by an x, y plane of scintillating fibers to examine the shower of particles created by high energy gamma-rays interacting in the converter material. The detector is composed of a tracker with 90 such modular planes and a calorimeter with 36 planes. The two major component of this detector are the scintillating fibers and their associated photodetectors. Here we present current status of development and test result of both of these. The Hamamatsu R5900-00-M64 multianode photomultiplier tube (MAPMT) is the baseline readout device. A characterization of this device has been performed including noise, cross- talk, gain variation, vibration, and thermal/vacuum test. A prototype fiber/MAPMT system has been tested at the Center for Advanced Microstructures and Devices at Louisiana State University with a photon beam and preliminary results are presented
Light-ion production in the interaction of 96 MeV neutrons with silicon
Double-differential cross sections for light-ion (p, d, t, He-3 and alpha)
production in silicon, induced by 96 MeV neutrons are reported. Energy spectra
are measured at eight laboratory angles, ranging from 20 degrees to 160 degrees
in steps of 20 degrees. Procedures for data taking and data reduction are
presented. Deduced energy-differential, angle-differential and production cross
sections are reported. Experimental cross sections are compared to theoretical
reaction model calculations and experimental data in the literature.Comment: 23 pages, 10 figures, added wrap-around correction (see section 4.3)
leading to changed cross-sections and figures, accepted Phys. Rev.
Quantum Computation with Quantum Dots and Terahertz Cavity Quantum Electrodynamics
A quantum computer is proposed in which information is stored in the two
lowest electronic states of doped quantum dots (QDs). Many QDs are located in a
microcavity. A pair of gates controls the energy levels in each QD. A
Controlled Not (CNOT) operation involving any pair of QDs can be effected by a
sequence of gate-voltage pulses which tune the QD energy levels into resonance
with frequencies of the cavity or a laser. The duration of a CNOT operation is
estimated to be much shorter than the time for an electron to decohere by
emitting an acoustic phonon.Comment: Revtex 6 pages, 3 postscript figures, minor typos correcte
Thermal shape fluctuation effects in the description of hot nuclei
The behavior of several nuclear properties with temperature is analyzed
within the framework of the Finite Temperature Hartree-Fock-Bogoliubov (FTHFB)
theory with the Gogny force and large configuration spaces. Thermal shape
fluctuations in the quadrupole degree of freedom, around the mean field
solution, are taken into account with the Landau prescription. As
representative examples the nuclei Er, Dy and Hg are
studied. Numerical results for the superfluid to normal and deformed to
spherical shape transitions are presented. We found a substantial effect of the
fluctuations on the average value of several observables. In particular, we get
a decrease in the critical temperature () for the shape transition as
compared with the plain FTHFB prediction as well as a washing out of the shape
transition signatures. The new values of are closer to the ones found in
Strutinsky calculations and with the Pairing Plus Quadrupole model Hamiltonian.Comment: 17 pages, 8 Figure
Measurement of the Associated Production Cross Section in Collisions at TeV
We present the first measurement of associated direct photon + muon
production in hadronic collisions, from a sample of 1.8 TeV
collisions recorded with the Collider Detector at Fermilab. Quantum
chromodynamics (QCD) predicts that these events are primarily from the Compton
scattering process , with the final state charm quark producing
a muon. Hence this measurement is sensitive to the charm quark content of the
proton. The measured cross section of is compared to a
leading-order QCD parton shower model as well as a next-to-leading-order QCD
calculation.Comment: 12 pages, 4 figures Added more detailed description of muon
background estimat
- …
