5,664 research outputs found
Enhanced Sampling in the Well-Tempered Ensemble
We introduce the well-tempered ensemble (WTE) which is the biased ensemble
sampled by well-tempered metadynamics when the energy is used as collective
variable. WTE can be designed so as to have approximately the same average
energy as the canonical ensemble but much larger fluctuations. These two
properties lead to an extremely fast exploration of phase space. An even
greater efficiency is obtained when WTE is combined with parallel tempering.
Unbiased Boltzmann averages are computed on the fly by a recently developed
reweighting method [M. Bonomi et al. J. Comput. Chem. 30, 1615 (2009)]. We
apply WTE and its parallel tempering variant to the 2d Ising model and to a
Go-model of HIV protease, demonstrating in these two representative cases that
convergence is accelerated by orders of magnitude.Comment: 7 pages, 5 figure
High-power test results of a 3 GHz single-cell cavity
Compact, reliable and little consuming accelerators are required for the
treatment of tumours with ions. TERA proposes the "cyclinac", composed of a
high-frequency, fast-cycling linac which boosts the energy of the particles
previously accelerated in a cyclotron. The dimensions of the linac can be
reduced if high gradients are used. TERA initiated a high-gradient test program
to understand the operational limit of such structures. The program foresees
the design, prototyping and high-power test of several high-gradient structures
operating at 3 and 5.7 GHz. The high-power tests of the 3 GHz single-cell
cavity were completed in Winter 2012. The maximum BDR threshold measured for
Emax of 170 MV/m and RF pulses of 2.5 \mu s was 3 x 10-6 bpp/m
TrustShadow: Secure Execution of Unmodified Applications with ARM TrustZone
The rapid evolution of Internet-of-Things (IoT) technologies has led to an
emerging need to make it smarter. A variety of applications now run
simultaneously on an ARM-based processor. For example, devices on the edge of
the Internet are provided with higher horsepower to be entrusted with storing,
processing and analyzing data collected from IoT devices. This significantly
improves efficiency and reduces the amount of data that needs to be transported
to the cloud for data processing, analysis and storage. However, commodity OSes
are prone to compromise. Once they are exploited, attackers can access the data
on these devices. Since the data stored and processed on the devices can be
sensitive, left untackled, this is particularly disconcerting.
In this paper, we propose a new system, TrustShadow that shields legacy
applications from untrusted OSes. TrustShadow takes advantage of ARM TrustZone
technology and partitions resources into the secure and normal worlds. In the
secure world, TrustShadow constructs a trusted execution environment for
security-critical applications. This trusted environment is maintained by a
lightweight runtime system that coordinates the communication between
applications and the ordinary OS running in the normal world. The runtime
system does not provide system services itself. Rather, it forwards requests
for system services to the ordinary OS, and verifies the correctness of the
responses. To demonstrate the efficiency of this design, we prototyped
TrustShadow on a real chip board with ARM TrustZone support, and evaluated its
performance using both microbenchmarks and real-world applications. We showed
TrustShadow introduces only negligible overhead to real-world applications.Comment: MobiSys 201
Early indication of decompensated heart failure in patients on home-telemonitoring: a comparison of prediction algorithms based on daily weight and noninvasive transthoracic bio-impedance
Background: Heart Failure (HF) is a common reason for hospitalization. Admissions might be prevented by early detection of and intervention for decompensation. Conventionally, changes in weight, a possible measure of fluid accumulation, have been used to detect deterioration. Transthoracic impedance may be a more sensitive and accurate measure of fluid accumulation.
Objective: In this study, we review previously proposed predictive algorithms using body weight and noninvasive transthoracic bio-impedance (NITTI) to predict HF decompensations.
Methods: We monitored 91 patients with chronic HF for an average of 10 months using a weight scale and a wearable bio-impedance vest. Three algorithms were tested using either simple rule-of-thumb differences (RoT), moving averages (MACD), or cumulative sums (CUSUM).
Results: Algorithms using NITTI in the 2 weeks preceding decompensation predicted events (P<.001); however, using weight alone did not. Cross-validation showed that NITTI improved sensitivity of all algorithms tested and that trend algorithms provided the best performance for either measurement (Weight-MACD: 33%, NITTI-CUSUM: 60%) in contrast to the simpler rules-of-thumb (Weight-RoT: 20%, NITTI-RoT: 33%) as proposed in HF guidelines.
Conclusions: NITTI measurements decrease before decompensations, and combined with trend algorithms, improve the detection of HF decompensation over current guideline rules; however, many alerts are not associated with clinically overt decompensation
Lab-on-Chip for Testing Myelotoxic Effect of Drugs and Chemicals
This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.In the last twenty years, one of the main goals in the drug discovery field has been the development
of reliable in vitro models. In particular, in 2006 the European Centre for the Validation of Alternative
Methods (ECVAM) has approved the Colony forming Unit-Granulocytes-Macrophages (CFU-GM) test,
which is the first and currently unique test applied to evaluate the myelotoxicity of xenobiotics in vitro. The
present work aimed at miniaturizing this in vitro assay by developing and validating a Lab-on-Chip (LoC)
platform consisting of a high number of bioreactor chambers with screening capabilities in a high-throughput
regime
Limits on the low energy antinucleon-nucleus annihilations from the Heisenberg principle
We show that the quantum uncertainty principle puts some limits on the
effectiveness of the antinucleon-nucleus annihilation at very low energies.
This is caused by the fact that the realization a very effective short-distance
reaction process implies information on the relative distance of the reacting
particles. Some quantitative predictions are possible on this ground, including
the approximate A-independence of antinucleon-nucleus annihilation rates.Comment: 10 pages, no figure
Noise reduction in muon tomography for detecting high density objects
The muon tomography technique, based on multiple Coulomb scattering of cosmic
ray muons, has been proposed as a tool to detect the presence of high density
objects inside closed volumes. In this paper a new and innovative method is
presented to handle the density fluctuations (noise) of reconstructed images, a
well known problem of this technique. The effectiveness of our method is
evaluated using experimental data obtained with a muon tomography prototype
located at the Legnaro National Laboratories (LNL) of the Istituto Nazionale di
Fisica Nucleare (INFN). The results reported in this paper, obtained with real
cosmic ray data, show that with appropriate image filtering and muon momentum
classification, the muon tomography technique can detect high density
materials, such as lead, albeit surrounded by light or medium density material,
in short times. A comparison with algorithms published in literature is also
presented
Coulomb corrections to low energy antiproton annihilation cross sections on protons and nuclei
We calculate, in a systematic way, the enhancement effect on
antiproton-proton and antiproton-nucleus annihilation cross sections at low
energy due to the initial state electrostatic interaction between the
projectile and the target nucleus. This calculation is aimed at future
comparisons between antineutron and antiproton annihilation rates on different
targets, for the extraction of pure isospin channels.Comment: 18 pages, 4 figures (latex format
- …
