15,534 research outputs found

    A determination of the radio-planetary frame tie from comparison of Earth orientation parameters

    Get PDF
    The orientation of the reference frame of radio source catalogs relative to that of planetary ephemerides, or 'frame tie,' can be a major systematic error source for interplanetary spacecraft orbit determination. This work presents a method of determining the radio-planetary frame tie from a comparison of very long baseline interferometry (VLBI) and lunar laser ranging (LLR) station coordinate and earth orientation parameter estimates. A frame tie result is presented with an accuracy of 25 nrad

    Signs of Magnetic Accretion in the X-ray Pulsar Binary GX 301-2

    Full text link
    Observations of the cyclotron resonance scattering feature in the X-ray spectrum of GX 301-2 suggest that the surface field of the neutron star is B_CRSF ~ 4 x 10^{12}G. The same value has been derived in modelling the rapid spin-up episodes in terms of the Keplerian disk accretion scenario. However, the spin-down rate observed during the spin-down trends significantly exceeds the value expected in currently used spin-evolution scenarios. This indicates that either the surface field of the star exceeds 50 x B_CRSF, or a currently used accretion scenario is incomplete. We show that the above discrepancy can be avoided if the accreting material is magnetized. The magnetic pressure in the accretion flow increases more rapidly than its ram pressure and, under certain conditions, significantly affects the accretion picture. The spin-down torque applied to the neutron star in this case is larger than that evaluated within a non-magnetized accretion scenario. We find that the observed spin evolution of the pulsar can be explained in terms of the magnetically controlled accretion flow scenario provided the surface field of the neutron star is ~ B_CRSF.Comment: Accepted for publication in Ap

    Analysing powers for the reaction npppπ\vec{\rm n} {\rm p} \to {\rm p} {\rm p} \pi^{-} and for np elastic scattering from 270 to 570 MeV

    Full text link
    The analysing power of the reaction npppπ{\rm n}{\rm p} \to {\rm p}{\rm p} \pi^{-} for neutron energies between threshold and 570 MeV has been determined using a transversely polarised neutron beam at PSI. The reaction has been studied in a kinematically complete measurement using a time-of-flight spectrometer with large acceptance. Analysing powers have been determined as a function of the c.m. pion angle in different regions of the proton-proton invariant mass. They are compared to other data from the reactions npppπ{\rm n}{\rm p} \to {\rm p}{\rm p} \pi^{-} and ppppπ0{{\rm p}{\rm p} \to {\rm p}{\rm p} \pi^{0}}. The np elastic scattering analysing power was determined as a by-product of the measurements.Comment: 12 pages, 6 figures, subitted to EPJ-

    The reaction npppπ{n} {p} \to {p} {p} \pi^{-} from threshold up to 570 MeV

    Full text link
    The reaction npppπ{n} {p} \to {p} {p} \pi^{-} has been studied in a kinematically complete measurement with a large acceptance time-of-flight spectrometer for incident neutron energies between threshold and 570 MeV. The proton-proton invariant mass distributions show a strong enhancement due to the pp(1S0^{1}{S}_{0}) final state interaction. A large anisotropy was found in the pion angular distributions in contrast to the reaction ppppπ0{p}{p} \to {p}{p} \pi^{0}. At small energies, a large forward/backward asymmetry has been observed. From the measured integrated cross section σ(npppπ)\sigma({n}{p} \to {\rm p}{p} \pi^{-}), the isoscalar cross section σ01\sigma_{01} has been extracted. Its energy dependence indicates that mainly partial waves with Sp final states contribute. Note: Due to a coding error, the differential cross sections dσ/dMpp{d \sigma}/{d M_{pp}} as shown in Fig. 9 are too small by a factor of two, and inn Table 3 the differential cross sections dσ/dΩπ{d \sigma}/{d \Omega_{\pi}^{*}} are too large by a factor of 10/2π10/2\pi. The integrated cross sections and all conclusions remain unchanged. A corresponding erratum has been submitted and accepted by European Physics Journal.Comment: 18 pages, 16 figure

    Preliminary error budget for an optical ranging system: Range, range rate, and differenced range observables

    Get PDF
    Future missions to the outer solar system or human exploration of Mars may use telemetry systems based on optical rather than radio transmitters. Pulsed laser transmission can be used to deliver telemetry rates of about 100 kbits/sec with an efficiency of several bits for each detected photon. Navigational observables that can be derived from timing pulsed laser signals are discussed. Error budgets are presented based on nominal ground stations and spacecraft-transceiver designs. Assuming a pulsed optical uplink signal, two-way range accuracy may approach the few centimeter level imposed by the troposphere uncertainty. Angular information can be achieved from differenced one-way range using two ground stations with the accuracy limited by the length of the available baseline and by clock synchronization and troposphere errors. A method of synchronizing the ground station clocks using optical ranging measurements is presented. This could allow differenced range accuracy to reach the few centimeter troposphere limit

    Photon statistical limitations for daytime optical tracking

    Get PDF
    Tracking of interplanetary spacecraft equipped with optical communication systems by using astrometric instruments is being investigated by JPL. Existing instruments are designed to work at night and, for bright sources, are limited by tropospheric errors. To provide full coverage of the solar system, astrometric tracking instruments must either be capable of daytime operation or be space-based. The integration times necessary for the ground-based daytime photon statistical errors to reach a given accuracy level (5 to 50 nanoradians) were computed for an ideal astrometric instrument. The required photon statistical integration times are found to be shorter than the tropospheric integrations times for the ideal detector. Since the astrometric need not be limited by photon statistics even under daytime conditions, it may be fruitful to investigate instruments for daytime optical tracking

    Concurrency Control for Perceivedly Instantaneous Transactions in Valid-Time Databases

    No full text
    Although temporal databases have received considerable attention as a topic for research, little work in the area has paid attention to the concurrency control mechanisms that might be employed in temporal databases. This paper describes how the notion of the current time --- also called `now' --- in valid-time databases can cause standard serialisation theory to give what are at least unintuitive results, if not actually incorrect results. The paper then describes two modifications to standard serialisation theory which correct the behaviour to give what we term perceivably instantaneous transactions; transactions where serialising T 1 and T 2 as [T 1 ; T 2 ] always implies that the current time seen by T 1 is less than or equal to the current time seen by T 2 . 1 Introduction Query languages for valid-time temporal database normally contain a notion of "currenttime " [TCG + 93, Sno95], usually represented as the value of a special variable now. While it is agreed that the value of..

    Using BATSE to measure gamma-ray burst polarization

    Get PDF
    We describe a technique for measuring the polarization of hard x-rays from γ-ray bursts based on the angular distribution of that portion of the flux which is scattered off the top of the Earth’s atmosphere. The scattering cross section depends not only on the scatter angle itself, but on the orientation of the scatter angle with respect to the incident polarization vector. Consequently, the distribution of the observed albedo flux will depend on the direction and the polarization properties (i.e., the level of polarization and polarization angle) of the source. Although the BATSE design (with its large field-of-view for each detector) is not optimized for albedo polarimetry, we have nonetheless investigated the feasibility of this technique using BATSE data
    corecore