226 research outputs found
The Timing Counter of the MEG experiment: calibration and performance
The MEG detector is designed to test Lepton Flavor Violation in the
decay down to a Branching Ratio of a few
. The decay topology consists in the coincident emission of a
monochromatic photon in direction opposite to a monochromatic positron. A
precise measurement of the relative time is crucial to suppress
the background. The Timing Counter (TC) is designed to precisely measure the
time of arrival of the and to provide information to the trigger system.
It consists of two sectors up and down stream the decay target, each consisting
of two layers. The outer one made of scintillating bars and the inner one of
scintillating fibers. Their design criteria and performances are described.Comment: Presented at the 12th Topical Seminar on Innovative Particle and
Radiation Detectors (IPRD10) 7 - 10 June 2010, Siena. Accepted by Nuclear
Physics B (Proceedings Supplements) (2011)tal
Latest results from the MEG experiment
We present here the latest results on the lepton-flavour–violating (LFV) decay μ → eγ based on an analysis of the data collected by the MEG detector at the Paul Scherrer Institute (PSI) in 2009 and 2010. The likelihood analysis of the combined data sample, corresponding to a total of 1.8×1014 muon decays, provides a 90% CL upper limit of 2.4 × 10−12 on the μ → eγ branching ratio, constituting the most stringent limit on the existence of this decay to date
MEG Upgrade Proposal
We propose the continuation of the MEG experiment to search for the charged
lepton flavour violating decay (cLFV) \mu \to e \gamma, based on an upgrade of
the experiment, which aims for a sensitivity enhancement of one order of
magnitude compared to the final MEG result, down to the
level. The key features of this new MEG upgrade are an increased rate
capability of all detectors to enable running at the intensity frontier and
improved energy, angular and timing resolutions, for both the positron and
photon arms of the detector. On the positron-side a new low-mass, single
volume, high granularity tracker is envisaged, in combination with a new highly
segmented, fast timing counter array, to track positron from a thinner stopping
target. The photon-arm, with the largest liquid xenon (LXe) detector in the
world, totalling 900 l, will also be improved by increasing the granularity at
the incident face, by replacing the current photomultiplier tubes (PMTs) with a
larger number of smaller photosensors and optimizing the photosensor layout
also on the lateral faces. A new DAQ scheme involving the implementation of a
new combined readout board capable of integrating the diverse functions of
digitization, trigger capability and splitter functionality into one condensed
unit, is also under development. We describe here the status of the MEG
experiment, the scientific merits of the upgrade and the experimental methods
we plan to use.Comment: A. M. Baldini and T. Mori Spokespersons. Research proposal submitted
to the Paul Scherrer Institute Research Committee for Particle Physics at the
Ring Cyclotron. 131 Page
Search for anomalies in the neutrino sector with muon spectrometers and large LArTPC imaging detectors at CERN
A new experiment with an intense ~2 GeV neutrino beam at CERN SPS is proposed
in order to definitely clarify the possible existence of additional neutrino
states, as pointed out by neutrino calibration source experiments, reactor and
accelerator experiments and measure the corresponding oscillation parameters.
The experiment is based on two identical LAr-TPCs complemented by magnetized
spectrometers detecting electron and muon neutrino events at Far and Near
positions, 1600 m and 300 m from the proton target, respectively. The ICARUS
T600 detector, the largest LAr-TPC ever built with a size of about 600 ton of
imaging mass, now running in the LNGS underground laboratory, will be moved at
the CERN Far position. An additional 1/4 of the T600 detector (T150) will be
constructed and located in the Near position. Two large area spectrometers will
be placed downstream of the two LAr-TPC detectors to perform charge
identification and muon momentum measurements from sub-GeV to several GeV
energy range, greatly complementing the physics capabilities. This experiment
will offer remarkable discovery potentialities, collecting a very large number
of unbiased events both in the neutrino and antineutrino channels, largely
adequate to definitely settle the origin of the observed neutrino-related
anomalies.Comment: Contribution to the European Strategy for Particle Physics - Open
Symposium Preparatory Group, Kracow 10-12 September 201
the meg experiment at psi
We present the latest results on the lepton flavor violating decay μ → e γ based on an analysis of the data collected by the MEG detector at the Paul Scherrer Institute during the years 2009–2011. The analysis of the combined data set, corresponding to 3.6 × 1014 muons stopped on target provides a 90% C.L. upper limit of 5.7 × 10−13 on the μ → e γ branching ratio, constituting the most stringent limit on the existence of this decay to date. After having successfully completed the 2012 and 2013 runs, an upgrade of the experiment, already approved by founding agencies and host laboratory, is foreseen. The status of the R&D, which has been started since 2012, will be also discussed
Measurement of the radiative decay of polarized muons in the MEG experiment
We studied the radiative muon decay by
using for the first time an almost fully polarized muon source. We identified a
large sample (~13000) of these decays in a total sample of 1.8x10^14 positive
muon decays collected in the MEG experiment in the years 2009--2010 and
measured the branching ratio B() =
(6.03+-0.14(stat.)+-0.53(sys.))x10^-8 for E_e > 45 MeV and E_{\gamma} > 40 MeV,
consistent with the Standard Model prediction. The precise measurement of this
decay mode provides a basic tool for the timing calibration, a normalization
channel, and a strong quality check of the complete MEG experiment in the
search for process.Comment: 8 pages, 7 figures. Added an introduction to NLO calculation which
was recently calculated. Published versio
New constraint on the existence of the mu+-> e+ gamma decay
The analysis of a combined data set, totaling 3.6 \times 10^14 stopped muons
on target, in the search for the lepton flavour violating decay mu^+ -> e^+
gamma is presented. The data collected by the MEG experiment at the Paul
Scherrer Institut show no excess of events compared to background expectations
and yield a new upper limit on the branching ratio of this decay of 5.7 \times
10^-13 (90% confidence level). This represents a four times more stringent
limit than the previous world best limit set by MEG.Comment: 5 pages, 3 figures, a version accepted in Phys. Rev. Let
The MEG detector for decay search
The MEG (Mu to Electron Gamma) experiment has been running at the Paul
Scherrer Institut (PSI), Switzerland since 2008 to search for the decay \meg\
by using one of the most intense continuous beams in the world. This
paper presents the MEG components: the positron spectrometer, including a thin
target, a superconducting magnet, a set of drift chambers for measuring the
muon decay vertex and the positron momentum, a timing counter for measuring the
positron time, and a liquid xenon detector for measuring the photon energy,
position and time. The trigger system, the read-out electronics and the data
acquisition system are also presented in detail. The paper is completed with a
description of the equipment and techniques developed for the calibration in
time and energy and the simulation of the whole apparatus.Comment: 59 pages, 90 figure
- …
