15,421 research outputs found

    Lower-dimensional pure-spinor superstrings

    Full text link
    We study to what extent it is possible to generalise Berkovits' pure-spinor construction in d=10 to lower dimensions. Using a suitable definition of a ``pure'' spinor in d=4,6, we propose models analogous to the d=10 pure-spinor superstring in these dimensions. Similar models in d=2,3 are also briefly discussed.Comment: 17 page

    The Algebraic Method

    Get PDF
    Combining the effect of an intermediate renormalization prescription (zero momentum subtraction) and the background field method (BFM), we show that the algebraic renormalization procedure needed for the computation of radiative corrections within non-invariant regularization schemes is drastically simplified. The present technique is suitable for gauge models and, here, is applied to the Standard Model. The use of the BFM allows a powerful organization of the counterterms and avoids complicated Slavnov-Taylor identities. Furthermore, the Becchi-Rouet-Stora-Tyutin (BRST) variation of background fields plays a special role in disentangling Ward-Takahashi identities (WTI) and Slavnov-Taylor identities (STI). Finally, the strategy to be applied to physical processes is exemplified for the process bsγb\to s\gamma.Comment: Latex, 38 page

    Ethylene production and quality in 1-Methylcyclopropene treated 'Abbé Fètel'pears after storage in Dynamically Controlled Atmosphere

    Get PDF
    This research studies the ethylene production rate (EP) and quality in 1-MCP treated ‘Abbé Fètel’ pears after storage in DCA compared to NA and CA. 1-MCP treated (300 ppb) and control fruit were stored at -0.5°C in NA, CA (2 kPa O2 + 0.7 kPa CO2) and DCA (0.7 kPa O2 + 0.3 kPa CO2). After 4 and 6 months storage, fruit were held up to 7 d at 20°C. Skin colour, firmness and EP were measured during shelf life and the incidence of disorders after 7 d. 1-MCP treatment drastically reduced EP, which began to recover after 7 d at 20°C, except for DCA stored pears. In control fruit, NA stored pears showed the highest EP. 1-MCP treated fruit were the greenest at the end of shelf-life, especially after CA and DCA. Control fruit stored in DCA and in CA were greener than NA both at 1 d and 7 d of shelf life. Pears treated with 1-MCP did not soften during shelf life, while in control fruit firmness decreased from about 40 N to about 15-20 N, whatever the storage atmosphere. 1-MCP treatment prevented soft and superficial scald and internal breakdown, independently of storage atmosphere. DCA prevented superficial scald in control fruit, while it increased internal browning and breakdown in control and 1-MCP treated pears. No differences were found for soft scald incidence between control DCA and CA stored fruit. The highest percentage of sound fruit was found in NA stored 1-MCP treated pears, and the lowest in control fruit stored in DC

    Minimal D=7D=7 Supergravity and the supersymmetry of Arnold-Beltrami Flux branes

    Get PDF
    In this paper we study some properties of the newly found Arnold-Beltrami flux-brane solutions to the minimal D=7D=7 supergravity. To this end we first single out the appropriate Free Differential Algebra containing both a gauge 33-form B[3]\mathbf{B}^{[3]} and a gauge 22-form B[2]\mathbf{B}^{[2]}: then we present the complete rheonomic parametrization of all the generalized curvatures. This allows us to identify two-brane configurations with Arnold-Beltrami fluxes in the transverse space with exact solutions of supergravity and to analyze the Killing spinor equation in their background. We find that there is no preserved supersymmetry if there are no additional translational Killing vectors. Guided by this principle we explicitly construct Arnold-Beltrami flux two-branes that preserve 00, 1/81/8 and 1/41/4 of the original supersymmetry. Two-branes without fluxes are instead BPS states and preserve 1/21/2 supersymmetry. For each two-brane solution we carefully study its discrete symmetry that is always given by some appropriate crystallographic group Γ\Gamma. Such symmetry groups Γ\Gamma are transmitted to the D=3D=3 gauge theories on the brane world--volume that occur in the gauge/gravity correspondence. Furthermore we illustrate the intriguing relation between gauge fluxes in two-brane solutions and hyperinstantons in D=4D=4 topological sigma-models.Comment: 56 pages, LaTeX source, 8 jpg figures, typos correcte

    The Quantum Theory of Chern-Simons Supergravity

    Get PDF
    We consider AdS3AdS_3 NN-extended Chern-Simons supergravity (\`a la Achucarro-Tonswend) and we study its gauge symmetries. We promote those gauge symmetries to a BRST symmetry and we perform its quantization by choosing suitable gauge-fixings. The resulting quantum theories have different features which we discuss in the present work. In particular, we show that a special choice of the gauge-fixing correctly reproduces the Ansatz by Alvarez, Valenzuela and Zanelli for the graphene fermion.Comment: 25 pages. Some points clarified and conclusion section extended; content of sections 3 and 4 reorganized. Version to be published on JHE

    An Introduction to the Covariant Quantization of Superstrings

    Get PDF
    We give an introduction to a new approach to the covariant quantization of superstrings. After a brief review of the classical Green--Schwarz superstring and Berkovits' approach to its quantization based on pure spinors, we discuss our covariant formulation without pure spinor constraints. We discuss the relation between the concept of grading, which we introduced to define vertex operators, and homological perturbation theory, and we compare our work with recent work by others. In the appendices, we include some background material for the Green-Schwarz and Berkovits formulations, in order that this presentation be self contained.Comment: LaTex, 23 pp. Contribution to the Proceedings of the Workshop in String Theory, Leuven 2002, some references added and a comment on ref. [16

    Pure-spinor superstrings in d=2,4,6

    Full text link
    We continue the study of the d=2,4,6 pure-spinor superstring models introduced in [1]. By explicitly solving the pure-spinor constraint we show that these theories have vanishing central charge and work out the (covariant) current algebra for the Lorentz currents. We argue that these super-Poincare covariant models may be thought of as compactifications of the superstring on CY_{4,3,2}, and take some steps toward making this precise by constructing a map to the RNS superstring variables. We also discuss the relation to the so called hybrid superstrings, which describe the same type of compactifications.Comment: 27 page

    Dark-matter halo mergers as a fertile environment for low-mass Population III star formation

    Full text link
    While Population III stars are typically thought to be massive, pathways towards lower-mass Pop III stars may exist when the cooling of the gas is particularly enhanced. A possible route is enhanced HD cooling during the merging of dark-matter halos. The mergers can lead to a high ionization degree catalysing the formation of HD molecules and may cool the gas down to the cosmic microwave background (CMB) temperature. In this paper, we investigate the merging of mini-halos with masses of a few 105^5 M_\odot and explore the feasibility of this scenario. We have performed three-dimensional cosmological hydrodynamics calculations with the ENZO code, solving the thermal and chemical evolution of the gas by employing the astrochemistry package KROME. Our results show that the HD abundance is increased by two orders of magnitude compared to the no-merging case and the halo cools down to \sim60 K triggering fragmentation. Based on Jeans estimates the expected stellar masses are about 10 M_\odot. Our findings show that the merging scenario is a potential pathway for the formation of low-mass stars.Comment: Submitted to MNRA
    corecore