2,003 research outputs found

    The streamwise turbulence intensity in the intermediate layer of turbulent pipe flow

    Get PDF
    The spectral model of Perry et al. (J. Fluid Mech., vol. 165, 1986, pp. 163–199) predicts that the integral length scale varies very slowly with distance to the wall in the intermediate layer. The only way for the integral length scale’s variation to be more realistic while keeping with the Townsend–Perry attached eddy spectrum is to add a new wavenumber range to the model at wavenumbers smaller than that spectrum. This necessary addition can also account for the high-Reynolds-number outer peak of the turbulent kinetic energy in the intermediate layer. An analytic expression is obtained for this outer peak in agreement with extremely high-Reynolds-number data by Hultmark et al. (Phys. Rev. Lett., vol. 108, 2012, 094501; J. Fluid Mech., vol. 728, 2013, pp. 376–395). Townsend’s (The Structure of Turbulent Shear Flows, 1976, Cambridge University Press) production–dissipation balance and the finding of Dallas et al. (Phys. Rev. E, vol. 80, 2009, 046306) that, in the intermediate layer, the eddy turnover time scales with skin friction velocity and distance to the wall implies that the logarithmic derivative of the mean flow has an outer peak at the same location as the turbulent kinetic energy. This is seen in the data of Hultmark et al. (Phys. Rev. Lett., vol. 108, 2012, 094501; J. Fluid Mech., vol. 728, 2013, pp. 376–395). The same approach also predicts that the logarithmic derivative of the mean flow has a logarithmic decay at distances to the wall larger than the position of the outer peak. This qualitative prediction is also supported by the aforementioned data

    Direct Numerical Simulation of a separated channel flow with a smooth profile

    Full text link
    A direct numerical simulation (DNS) of a channel flow with one curved surface was performed at moderate Reynolds number (Re_tau = 395 at the inlet). The adverse pressure gradient was obtained by a wall curvature through a mathematical mapping from physical coordinates to Cartesian ones. The code, using spectral spanwise and normal discretization, combines the advantage of a good accuracy with a fast integration procedure compared to standard numerical procedures for complex geometries. The turbulent flow slightly separates on the profile at the lower curved wall and is at the onset of separation at the opposite flat wall. The thin separation bubble is characterized with a reversal flow fraction. Intense vortices are generated near the separation line on the lower wall but also at the upper wall. Turbulent normal stresses and kinetic energy budget are investigated along the channel.Comment: 23 pages, submitted to Journal of Turbulenc

    Influence of turbulence on the dynamo threshold

    Get PDF
    We use direct and stochastic numerical simulations of the magnetohydrodynamic equations to explore the influence of turbulence on the dynamo threshold. In the spirit of the Kraichnan-Kazantsev model, we model the turbulence by a noise, with given amplitude, injection scale and correlation time. The addition of a stochastic noise to the mean velocity significantly alters the dynamo threshold. When the noise is at small (resp. large) scale, the dynamo threshold is decreased (resp. increased). For a large scale noise, a finite correlation time reinforces this effect

    A comprehensive approach to analyze discrepancies between land surface models and in-situ measurements: a case study over the US and Illinois with SECHIBA forced by NLDAS

    Get PDF
    The purpose of this study is to test the ability of the Land Surface Model SECHIBA to simulate water budget and particularly soil moisture at two different scales: regional and local. The model is forced by NLDAS data set at 1/8th degree resolution over the 1997–1999 period. SECHIBA gives satisfying results in terms of evapotranspiration and runoff over the US compared with four other land surface models, all forced by NLDAS data set for a common time period. The simulated soil moisture is compared to in-situ data from the Global Soil Moisture Database across Illinois by computing a soil wetness index. A comprehensive approach is performed to test the ability of SECHIBA to simulate soil moisture with a gradual change of the vegetation parameters closely related to the experimental conditions. With default values of vegetation parameters, the model overestimates soil moisture, particularly during summer. Sensitivity tests of the model to the change of vegetation parameters show that the roots extraction parameter has the largest impact on soil moisture, other parameters such as LAI, height or soil resistance having a minor impact. Moreover, a new evapotranspiration computation including bare soil evaporation under vegetation has been introduced into the model. The results point out an improvement of the soil moisture simulation when this effect is taken into account. Finally, soil moisture sensitivity to precipitation variation is addressed and it is shown that soil moisture observations can be rather different, depending on the method of measuring field capacity. When the observed field capacity is deducted from the observed volumetric water profiles, simulated soil wetness index is closer to the observations

    Effect of Copper Doping on Charge Ordering in La 1/3 Ca 2/3 Mn 1 - y Cu y O 3 (0 ≤ y ≤ 0.07)

    Get PDF
    Electron microscope studies have shown that the presence of copper suppresses the formation of a regular superstructure, which is characteristic of the undoped starting compound, beginning already from low concentrations (y=0.01). Differential scanning calorimetry revealed a substantial decrease in the transition entropy at the onset of charge ordering in copper-doped samples as compared to the starting compound. Doping with copper destroys long-range charge-orbital ordering and retains apparently only short-range orderyesBelgorod State Universit

    Extented ionized gas emission and kinematics of the compact group galaxies in HCG 16: Signatures of mergers

    Get PDF
    We report on kinematic observations of Ha emission line from four late-type galaxies of Hickson Compact Group 16 (H16a,b,c and d) obtained with a scanning Fabry-Perot interferometer and samplings of 16 km/s and 1". The velocity fields show kinematic peculiarities for three of the four galaxies: H16b, c and d. Misalignments between the kinematic and photometric axes of gas and stellar components (H16b,c,d), double gas systems (H16c) and severe warping of the kinematic major axis (H16b and c) were some of the peculiarities detected. We conclude that major merger events have taken place in at least two of the galaxies group. H16c and d, based on their significant kinematic peculiarities, their double nuclei and high infrared luminosities. Their Ha gas content is strongly spatially concentred - H16d contains a peculiar bar-like structure confined to the inner \sim 1 h^-1 kpc region. These observations are in agreement with predictions of simulations, namely that the gas flows towards the galaxy nucleus during mergers, forms bars and fuel the central activity. Galaxy H16b, and Sb galaxy, also presents some of the kinematic evidences for past accretion events. Its gas content, however, is very spare, limiting our ability to find other kinematic merging indicators, if they are present. We find that isolated mergers, i.e., they show an anormorphous morphology and no signs of tidal tails. Tidal arms and tails formed during the mergers may have been stripped by the group potential (Barnes & Hernquist 1992) ar alternatively they may have never been formed. Our observations suggest that HCG 16 may be a young compact group in formation throught the merging of close-by objects in a dense environment.Comment: Accepted for publication in ApJ. 35 pages, 13 figures. tar file gzipped and uuencode

    Motion of Contact Line of a Crystal Over the Edge of Solid Mask in Epitaxial Lateral Overgrowth

    Full text link
    Mathematical model that allows for direct tracking of the homoepitaxial crystal growth out of the window etched in the solid, pre-deposited layer on the substrate is described. The growth is governed by the normal (to the crystal-vapor interface) flux from the vapor phase and by the interface diffusion. The model accounts for possibly inhomogeneous energy of the mask surface and for strong anisotropies of crystal-vapor interfacial energy and kinetic mobility. Results demonstrate that the motion of the crystal-mask contact line slows down abruptly as radius of curvature of the mask edge approaches zero. Numerical procedure is suggested to overcome difficulties associated with ill-posedness of the evolution problem for the interface with strong energy anisotropy. Keywords: Thin films, epitaxy, MOCVD, surface diffusion, interface dynamics, contact lines, rough surfaces, wetting, regularization of ill-posed evolution problems.Comment: 21 pages, 11 figures; to appear in Computational Materials Scienc

    Kang-Redner Anomaly in Cluster-Cluster Aggregation

    Full text link
    The large time, small mass, asymptotic behavior of the average mass distribution \pb is studied in a dd-dimensional system of diffusing aggregating particles for 1d21\leq d \leq 2. By means of both a renormalization group computation as well as a direct re-summation of leading terms in the small reaction-rate expansion of the average mass distribution, it is shown that \pb \sim \frac{1}{t^d} (\frac{m^{1/d}}{\sqrt{t}})^{e_{KR}} for mtd/2m \ll t^{d/2}, where eKR=ϵ+O(ϵ2)e_{KR}=\epsilon +O(\epsilon ^2) and ϵ=2d\epsilon =2-d. In two dimensions, it is shown that \pb \sim \frac{\ln(m) \ln(t)}{t^2} for mt/ln(t) m \ll t/ \ln(t). Numerical simulations in two dimensions supporting the analytical results are also presented.Comment: 11 pages, 6 figures, Revtex

    Comparison of high spatial resolution stereo-PIV measurements in a turbulent boundary layer with available DNS dataset

    Get PDF
    In the present contribution, the aptitude of Stereoscopic Particle Image Velocimetry (SPIV) and of Direct Numerical Simulations (DNS) to investigate coherent structures of near wall turbulence is evaluated. For this purpose, the general properties and constraints of the two techniques are first reviewed. Then, data obtained from stereo-PIV experiments in a boundary layer and DNS in a channel flow are considered. Some statistics of the velocity fields are computed, and the results obtained from the two approaches compared
    corecore