593 research outputs found

    On noise treatment in radio measurements of cosmic ray air showers

    Get PDF
    Precise measurements of the radio emission by cosmic ray air showers require an adequate treatment of noise. Unlike to usual experiments in particle physics, where noise always adds to the signal, radio noise can in principle decrease or increase the signal if it interferes by chance destructively or constructively. Consequently, noise cannot simply be subtracted from the signal, and its influence on amplitude and time measurement of radio pulses must be studied with care. First, noise has to be determined consistently with the definition of the radio signal which typically is the maximum field strength of the radio pulse. Second, the average impact of noise on radio pulse measurements at individual antennas is studied for LOPES. It is shown that a correct treatment of noise is especially important at low signal-to-noise ratios: noise can be the dominant source of uncertainty for pulse height and time measurements, and it can systematically flatten the slope of lateral distributions. The presented method can also be transfered to other experiments in radio and acoustic detection of cosmic rays and neutrinos.Comment: 4 pages, 6 figures, submitted to NIM A, Proceedings of ARENA 2010, Nantes, Franc

    Experimental evidence for the sensitivity of the air-shower radio signal to the longitudinal shower development

    Get PDF
    We observe a correlation between the slope of radio lateral distributions, and the mean muon pseudorapidity of 59 individual cosmic-ray-air-shower events. The radio lateral distributions are measured with LOPES, a digital radio interferometer co-located with the multi-detector-air-shower array KASCADE-Grande, which includes a muon-tracking detector. The result proves experimentally that radio measurements are sensitive to the longitudinal development of cosmic-ray air-showers. This is one of the main prerequisites for using radio arrays for ultra-high-energy particle physics and astrophysics.Comment: 6 pages, 5 figures, accepted for publication by Physical Review

    The wavefront of the radio signal emitted by cosmic ray air showers

    Get PDF
    Analyzing measurements of the LOPES antenna array together with corresponding CoREAS simulations for more than 300 measured events with energy above 101710^{17}\,eV and zenith angles smaller than 4545^\circ, we find that the radio wavefront of cosmic-ray air showers is of approximately hyperbolic shape. The simulations predict a slightly steeper wavefront towards East than towards West, but this asymmetry is negligible against the measurement uncertainties of LOPES. At axis distances 50\gtrsim 50\,m, the wavefront can be approximated by a simple cone. According to the simulations, the cone angle is clearly correlated with the shower maximum. Thus, we confirm earlier predictions that arrival time measurements can be used to study the longitudinal shower development, but now using a realistic wavefront. Moreover, we show that the hyperbolic wavefront is compatible with our measurement, and we present several experimental indications that the cone angle is indeed sensitive to the shower development. Consequently, the wavefront can be used to statistically study the primary composition of ultra-high energy cosmic rays. At LOPES, the experimentally achieved precision for the shower maximum is limited by measurement uncertainties to approximately 140140\,g/cm2^2. But the simulations indicate that under better conditions this method might yield an accuracy for the atmospheric depth of the shower maximum, XmaxX_\mathrm{max}, better than 3030\,g/cm2^2. This would be competitive with the established air-fluorescence and air-Cherenkov techniques, where the radio technique offers the advantage of a significantly higher duty-cycle. Finally, the hyperbolic wavefront can be used to reconstruct the shower geometry more accurately, which potentially allows a better reconstruction of all other shower parameters, too.Comment: accepted by JCA
    corecore