432 research outputs found
Stable sub-complexes observed in situ suggest a modular assembly pathway of the bacterial flagellar motor
The self-assembly of cellular macromolecular machines such as the bacterial flagellar motor requires the spatio- temporal synchronization of gene expression, protein localization and association of a dozen or more unique components. In Salmonella and Escherichia coli, a sequential, outward assembly mechanism has been proposed for the flagellar motor starting from the inner membrane, with each subsequent component stabilizing the last. Here, using electron cryo-tomography of intact Legionella pneumophila, Pseudomonas aeruginosa and Shewanella oneidensis cells, we observe stable outer-membrane-embedded sub-complexes of the flagellar motor. These sub- complexes consist of the periplasmic embellished P- and L-rings, in the absence of other flagellar components, and bend the membrane inward dramatically. Additionally, we also observe independent inner-membrane sub- complexes consisting of the C- and MS-rings and export apparatus. These results suggest an alternate model for flagellar motor assembly in which outer- and inner-membrane-associated sub-complexes form independently and subsequently join, enabling later steps of flagellar production to proceed
Upper Limits on a Stochastic Background of Gravitational Waves
The Laser Interferometer Gravitational-Wave Observatory has performed a third science run with much improved sensitivities of all three interferometers. We present an analysis of approximately 200 hours of data acquired during this run, used to search for a stochastic background of gravitational radiation. We place upper bounds on the energy density stored as gravitational radiation for three different spectral power laws. For the flat spectrum, our limit of Ω_0<8.4×10^(-4) in the 69–156 Hz band is ~10^5 times lower than the previous result in this frequency range
First search for gravitational waves from the youngest known neutron star
We present a search for periodic gravitational waves from the neutron star in the supernova remnant Cassiopeia
A. The search coherently analyzes data in a 12 day interval taken from the fifth science run of the Laser
Interferometer Gravitational-Wave Observatory. It searches gravitational-wave frequencies from 100 to 300 Hz
and covers a wide range of first and second frequency derivatives appropriate for the age of the remnant and
for different spin-down mechanisms. No gravitational-wave signal was detected. Within the range of search
frequencies, we set 95% confidence upper limits of (0.7–1.2) × 10^(−24) on the intrinsic gravitational-wave
strain, (0.4–4) × 10^(−4) on the equatorial ellipticity of the neutron star, and 0.005–0.14 on the amplitude of
r-mode oscillations of the neutron star. These direct upper limits beat indirect limits derived from energy
conservation and enter the range of theoretical predictions involving crystalline exotic matter or runaway r-modes.
This paper is also the first gravitational-wave search to present upper limits on the r-mode amplitude
Search for Gravitational-wave Inspiral Signals Associated with Short Gamma-ray Bursts During LIGO's Fifth and Virgo's First Science Run
Progenitor scenarios for short gamma-ray bursts (short GRBs) include coalescenses of two neutron stars or a neutron star and black hole, which would necessarily be accompanied by the emission of strong gravitational waves. We present a search for these known gravitational-wave signatures in temporal and directional coincidence with 22 GRBs that had sufficient gravitational-wave data available in multiple instruments during LIGO's fifth science run, S5, and Virgo's first science run, VSR1. We find no statistically significant gravitational-wave candidates within a [ – 5, + 1) s window around the trigger time of any GRB. Using the Wilcoxon-Mann-Whitney U-test, we find no evidence for an excess of weak gravitational-wave signals in our sample of GRBs. We exclude neutron star-black hole progenitors to a median 90% confidence exclusion distance of 6.7 Mpc
- …
