326 research outputs found

    Envisioning for sustainable development. A cross- country experience

    Get PDF
    The research is aimed at identifying and testing a methodology and a practical instrument that can guide a process for a shared strategic vision, through an organization or network. The resulted vision can have positive effects on knowledge-management and value-creation capabilities, also in a perspective of sustainability and within SMART development paths. The chosen methodology is of a mixed qualitative/quantitative type, since it is suitable for collecting data and information about a network or a community on objectives and future perspectives within a group of reference organizations. Vision sharing, implementation of the envisioning process, and its subsequent evolution was also studied via ethnographic research instruments. The adopted and tested methodology highlights the importance of the role of a scientific methodology in envisioning processes, in particular at the inter- organizational level and, more importantly, in a highly complex sector such as sustainable development. In fact, preparing a model of the envisioning process itself can represent an essential instrument for developing strategic objectives shared among networks or communities that intend to promote sustainable, responsible, and integrated development thanks to the simultaneous creation of valu

    Radiative transfer in very optically thick circumstellar disks

    Get PDF
    In this paper we present two efficient implementations of the diffusion approximation to be employed in Monte Carlo computations of radiative transfer in dusty media of massive circumstellar disks. The aim is to improve the accuracy of the computed temperature structure and to decrease the computation time. The accuracy, efficiency and applicability of the methods in various corners of parameter space are investigated. The effects of using these methods on the vertical structure of the circumstellar disk as obtained from hydrostatic equilibrium computations are also addressed. Two methods are presented. First, an energy diffusion approximation is used to improve the accuracy of the temperature structure in highly obscured regions of the disk, where photon counts are low. Second, a modified random walk approximation is employed to decrease the computation time. This modified random walk ensures that the photons that end up in the high-density regions can quickly escape to the lower density regions, while the energy deposited by these photons in the disk is still computed accurately. A new radiative transfer code, MCMax, is presented in which both these diffusion approximations are implemented. These can be used simultaneously to increase both computational speed and decrease statistical noise. We conclude that the diffusion approximations allow for fast and accurate computations of the temperature structure, vertical disk structure and observables of very optically thick circumstellar disks.Comment: Accepted for publication in A&

    Fast ray-tracing algorithm for circumstellar structures (FRACS). II. Disc parameters of the B[e] supergiant CPD-57° 2874 from VLTI/MIDI data

    Get PDF
    B[e] supergiants are luminous, massive post-main sequence stars exhibiting non-spherical winds, forbidden lines, and hot dust in a disc-like structure. The physical properties of their rich and complex circumstellar environment (CSE) are not well understood, partly because these CSE cannot be easily resolved at the large distances found for B[e] supergiants (typically \ga 1~kpc). From mid-IR spectro-interferometric observations obtained with VLTI/MIDI we seek to resolve and study the CSE of the Galactic B[e] supergiant CPD-57\degr\,2874. For a physical interpretation of the observables (visibilities and spectrum) we use our ray-tracing radiative transfer code (FRACS), which is optimised for thermal spectro-interferometric observations. Thanks to the short computing time required by FRACS (<10<10~s per monochromatic model), best-fit parameters and uncertainties for several physical quantities of CPD-57\degr\,2874 were obtained, such as inner dust radius, relative flux contribution of the central source and of the dusty CSE, dust temperature profile, and disc inclination. The analysis of VLTI/MIDI data with FRACS allowed one of the first direct determinations of physical parameters of the dusty CSE of a B[e] supergiant based on interferometric data and using a full model-fitting approach. In a larger context, the study of B[e] supergiants is important for a deeper understanding of the complex structure and evolution of hot, massive stars

    Searching for sub-stellar companion into the LkCa15 proto-planetary disk

    Full text link
    Recent sub-millimetric observations at the Plateau de Bure interferometer evidenced a cavity at ~ 46 AU in radius into the proto-planetary disk around the T Tauri star LkCa15 (V1079 Tau), located in the Taurus molecular cloud. Additional Spitzer observations have corroborated this result possibly explained by the presence of a massive (>= 5 MJup) planetary mass, a brown dwarf or a low mass star companion at about 30 AU from the star. We used the most recent developments of high angular resolution and high contrast imaging to search directly for the existence of this putative companion, and to bring new constraints on its physical and orbital properties. The NACO adaptive optics instrument at VLT was used to observe LkCa15 using a four quadrant phase mask coronagraph to access small angular separations at relatively high contrast. A reference star at the same parallactic angle was carefully observed to optimize the quasi-static speckles subtraction (limiting our sensitivity at less than 1.0). Although we do not report any positive detection of a faint companion that would be responsible for the observed gap in LkCa15's disk (25-30 AU), our detection limits start constraining its probable mass, semi-major axis and eccentricity. Using evolutionary model predictions, Monte Carlo simulations exclude the presence of low eccentric companions with masses M >= 6 M Jup and orbiting at a >= 100 AU with significant level of confidence. For closer orbits, brown dwarf companions can be rejected with a detection probability of 90% down to 80 AU (at 80% down to 60 AU). Our detection limits do not access the star environment close enough to fully exclude the presence of a brown dwarf or a massive planet within the disk inner activity (i.e at less than 30 AU). Only, further and higher contrast observations should unveil the existence of this putative companion inside the LkCa15 disk.Comment: 6 pages, 4 figures, accepted for publication in A&

    Efficient Monte Carlo methods for continuum radiative transfer

    Full text link
    We discuss the efficiency of Monte Carlo methods in solving continuum radiative transfer problems. The sampling of the radiation field and convergence of dust temperature calculations in the case of optically thick clouds are both studied. For spherically symmetric clouds we find that the computational cost of Monte Carlo simulations can be reduced, in some cases by orders of magnitude, with simple importance weighting schemes. This is particularly true for models consisting of cells of different sizes for which the run times would otherwise be determined by the size of the smallest cell. We present a new idea of extending importance weighting to scattered photons. This is found to be useful in calculations of scattered flux and could be important for three-dimensional models when observed intensity is needed only for one general direction of observations. Convergence of dust temperature calculations is studied for models with optical depths 10-10000. We examine acceleration methods where radiative interactions inside a cell or between neighbouring cells are treated explicitly. In optically thick clouds with strong self-coupling between dust temperatures the run times can be reduced by more than one order of magnitude. The use of a reference field was also examined. This eliminates the need for repeating simulation of constant sources (e.g., background radiation) after the first iteration and significantly reduces sampling errors. The applicability of the methods for three-dimensional models is discussed.Comment: submitted to A&A, 19 page

    Cooperative Control for Multiple Autonomous Vehicles Using Descriptor Functions

    Get PDF
    The paper presents a novel methodology for the control management of a swarm of autonomous vehicles. The vehicles, or agents, may have different skills, and be employed for different missions. The methodology is based on the definition of descriptor functions that model the capabilities of the single agent and each task or mission. The swarm motion is controlled by minimizing a suitable norm of the error between agents’ descriptor functions and other descriptor functions which models the entire mission. The validity of the proposed technique is tested via numerical simulation, using different task assignment scenarios

    Radiative equilibrium in Monte Carlo radiative transfer using frequency distribution adjustment

    Full text link
    The Monte Carlo method is a powerful tool for performing radiative equilibrium calculations, even in complex geometries. The main drawback of the standard Monte Carlo radiative equilibrium methods is that they require iteration, which makes them numerically very demanding. Bjorkman & Wood recently proposed a frequency distribution adjustment scheme, which allows radiative equilibrium Monte Carlo calculations to be performed without iteration, by choosing the frequency of each re-emitted photon such that it corrects for the incorrect spectrum of the previously re-emitted photons. Although the method appears to yield correct results, we argue that its theoretical basis is not completely transparent, and that it is not completely clear whether this technique is an exact rigorous method, or whether it is just a good and convenient approximation. We critically study the general problem of how an already sampled distribution can be adjusted to a new distribution by adding data points sampled from an adjustment distribution. We show that this adjustment is not always possible, and that it depends on the shape of the original and desired distributions, as well as on the relative number of data points that can be added. Applying this theorem to radiative equilibrium Monte Carlo calculations, we provide a firm theoretical basis for the frequency distribution adjustment method of Bjorkman & Wood, and we demonstrate that this method provides the correct frequency distribution through the additional requirement of radiative equilibrium. We discuss the advantages and limitations of this approach, and show that it can easily be combined with the presence of additional heating sources and the concept of photon weighting. However, the method may fail if small dust grains are included... (abridged)Comment: 17 pages, 2 figures, accepted for publication in New Astronom

    High angular resolution N-band observation of the silicate carbon star IRAS08002-3803 with the VLTI/MIDI instrument

    Full text link
    We present the results of N-band spectro-interferometric observations of the silicate carbon star IRAS08002-3803 with the MID-infrared Interferometric instrument (MIDI) at the Very Large Telescope Interferometer (VLTI) of the European Southern Observatory (ESO). The observations were carried out using two unit telescopes (UT2 and UT3) with projected baseline lengths ranging from 39 to 47 m. Our observations of IRAS08002-3803 have spatially resolved the dusty environment of a silicate carbon star for the first time and revealed an unexpected wavelength dependence of the angular size in the N band: the uniform-disk diameter is found to be constant and ~36 mas (72 Rstar) between 8 and 10 micron, while it steeply increases longward of 10 micron to reach ~53 mas (106 Rstar) at 13 micron. Model calculations with our Monte Carlo radiative transfer code show that neither spherical shell models nor axisymmetric disk models consisting of silicate grains alone can simultaneously explain the observed wavelength dependence of the visibility and the spectral energy distribution (SED). We propose that the circumstellar environment of IRAS08002-3803 may consist of two grain species coexisting in the disk: silicate and a second grain species, for which we consider amorphous carbon, large silicate grains, and metallic iron grains. Comparison of the observed visibilities and SED with our models shows that such disk models can fairly -- though not entirely satisfactorily -- reproduce the observed SED and N-band visibilities. Our MIDI observations and the radiative transfer calculations lend support to the picture where oxygen-rich material around IRAS08002-3803 is stored in a circumbinary disk surrounding the carbon-rich primary star and its putative low-luminosity companion.Comment: 15 pages, 8 figures, accepted for publication in A&

    Cholinergic imaging in dementia spectrum disorders

    Get PDF
    The multifaceted nature of the pathology of dementia spectrum disorders has complicated their management and the development of effective treatments. This is despite the fact that they are far from uncommon, with Alzheimer’s disease (AD) alone affecting 35 million people worldwide. The cholinergic system has been found to be crucially involved in cognitive function, with cholinergic dysfunction playing a pivotal role in the pathophysiology of dementia. The use of molecular imaging such as SPECT and PET for tagging targets within the cholinergic system has shown promise for elucidating key aspects of underlying pathology in dementia spectrum disorders, including AD or parkinsonian dementias. SPECT and PET studies using selective radioligands for cholinergic markers, such as [11C]MP4A and [11C]PMP PET for acetylcholinesterase (AChE), [123I]5IA SPECT for the α4β2 nicotinic acetylcholine receptor and [123I]IBVM SPECT for the vesicular acetylcholine transporter, have been developed in an attempt to clarify those aspects of the diseases that remain unclear. This has led to a variety of findings, such as cortical AChE being significantly reduced in Parkinson’s disease (PD), PD with dementia (PDD) and AD, as well as correlating with certain aspects of cognitive function such as attention and working memory. Thalamic AChE is significantly reduced in progressive supranuclear palsy (PSP) and multiple system atrophy, whilst it is not affected in PD. Some of these findings have brought about suggestions for the improvement of clinical practice, such as the use of a thalamic/cortical AChE ratio to differentiate between PD and PSP, two diseases that could overlap in terms of initial clinical presentation. Here, we review the findings from molecular imaging studies that have investigated the role of the cholinergic system in dementia spectrum disorders.</p
    corecore