10,606 research outputs found
A route to explain water anomalies from results on an aqueous solution of salt
In this paper we investigate the possibility to detect the hypothesized
liquid-liquid critical point of water in supercooled aqueous solutions of
salts. Molecular dynamics computer simulations are conducted on bulk TIP4P
water and on an aqueous solution of sodium chloride in TIP4P water, with
concentration c = 0.67 mol/kg. The liquid-liquid critical point is found both
in the bulk and in the solution. Its position in the thermodynamic plane shifts
to higher temperature and lower pressure for the solution. Comparison with
available experimental data allowed us to produce the phase diagrams of both
bulk water and the aqueous solution as measurable in experiments. Given the
position of the liquid-liquid critical point in the solution as obtained from
our simulations, the experimental determination of the hypothesized
liquid-liquid critical point of water in aqueous solutions of salts appears
possible.Comment: 5 pages, 6 figures. Accepted for publication on the Journal of
Chemical Physics (2010)
A molecular dynamics simulation of water confined in a cylindrical SiO2 pore
A molecular dynamics simulation of water confined in a silica pore is
performed in order to compare it with recent experimental results on water
confined in porous Vycor glass at room temperature. A cylindrical pore of 40 A
is created inside a vitreous SiO2 cell, obtained by computer simulation. The
resulting cavity offers to water a rough hydrophilic surface and its geometry
and size are similar to those of a typical pore in porous Vycor glass. The
site-site distribution functions of water inside the pore are evaluated and
compared with bulk water results. We find that the modifications of the
site-site distribution functions, induced by confinement, are in qualitative
agreement with the recent neutron diffraction experiment, confirming that the
disturbance to the microscopic structure of water mainly concerns orientational
arrangement of neighbouring molecules. A layer analysis of MD results indicates
that, while the geometrical constraint gives an almost constant density profile
up to the layers closest to the interface, with an uniform average number of
hydrogen bonds (HB), the hydrophilic interaction produces the wetting of the
pore surface at the expenses of the adjacent water layers. Moreover the
orientational disorder togheter with a reduction of the average number of HB
persists in the layers close to the interface, while water molecules cluster in
the middle of the pore at a density and with a coordination similar to bulk
water.Comment: RevTex, 11 pages, 12 figures; to appear in June 15 issue of J. Chem.
Phy
Glass transition and layering effects in confined water: a computer simulation study
Single particle dynamics of water confined in a nanopore is studied through
Computer Molecular Dynamics. The pore is modeled to represent the average
properties of a pore of Vycor glass. Dynamics is analyzed at different
hydration levels and upon supercooling. At all hydration levels and all
temperatures investigated a layering effect is observed due to the strong
hydrophilicity of the substrate. The time density correlators show, already at
ambient temperature, strong deviations from the Debye and the stretched
exponential behavior. Both on decreasing hydration level and upon supercooling
we find features that can be related to the cage effect typical of a
supercooled liquid undergoing a kinetic glass transition. Nonetheless the
behavior predicted by Mode Coupling Theory can be observed only by carrying out
a proper shell analysis of the density correlators. Water molecules within the
first two layers from the substrate are in a glassy state already at ambient
temperature (bound water). The remaining subset of molecules (free water)
undergoes a kinetic glass transition; the relaxation of the density correlators
agree with the main predictions of the theory. From our data we can predict the
temperature of structural arrest of free water.Comment: 14 pages, 15 figures inserted in the text, to be published in J.
Chem. Phys. (2000
Structural Properties of High and Low Density Water in a Supercooled Aqueous Solution of Salt
We consider and compare the structural properties of bulk TIP4P water and of
a sodium chloride aqueous solution in TIP4P water with concentration c = 0.67
mol/kg, in the metastable supercooled region. In a previous paper [D.
Corradini, M. Rovere and P. Gallo, J. Chem. Phys. 132, 134508 (2010)] we found
in both systems the presence of a liquid-liquid critical point (LLCP). The LLCP
is believed to be the end point of the coexistence line between a high density
liquid (HDL) and a low density liquid (LDL) phase of water. In the present
paper we study the different features of water-water structure in HDL and LDL
both in bulk water and in the solution. We find that the ions are able to
modify the bulk LDL structure, rendering water-water structure more similar to
the bulk HDL case. By the study of the hydration structure in HDL and LDL, a
possible mechanism for the modification of the bulk LDL structure in the
solution is identified in the substitution of the oxygen by the chloride ion in
oxygen coordination shells.Comment: 10 pages, 10 figures, 2 tables. Accepted for publication on J. Phys.
Chem
Nitric oxide alleviates cadmium- but not arsenic-induced damages in rice roots
Nitric oxide (NO) has signalling roles in plant stress responses. Cadmium (Cd) and arsenic (As) soil pollutants alter plant development, mainly the root-system, by increasing NO-content, triggering reactive oxygen species (ROS), and forming peroxynitrite by NO-reaction with the superoxide anion. Interactions of NO with ROS and peroxynitrite seem important for plant tolerance to heavy metal(oid)s, but the mechanisms underlying this process remain unclear. Our goal was to investigate NO-involvement in rice (Oryza sativa L.) root-system after exposure to Cd or As, to highlight possible differences in NO-behaviour between the two pollutants. To the aim, morpho-histological, chemical and epifluorescence analyses were carried out on roots of different origin in the root-system, under exposure to Cd or As, combined or not with sodium nitroprusside (SNP), a NO-donor compound. Results show that increased intracellular NO levels alleviate the root-system alterations induced by Cd, i.e., inhibition of adventitious root elongation and lateral root formation, increment in lignin deposition in the sclerenchyma/endodermis cell-walls, but, even if reducing As-induced endodermis lignification, do not recover the majority of the As-damages, i.e., enhancement of AR-elongation, reduction of LR-formation, anomalous tissue-proliferation. However, NO decreases both Cd and As uptake, without affecting the pollutants translocation-capability from roots to shoots. Moreover, NO reduces the Cd-induced, but not the As-induced, ROS levels by triggering peroxynitrite production. Altogether, results highlight a different behaviour of NO in modulating rice root-system response to the toxicity of the heavy metal Cd and the metalloid As, which depends by the NO-interaction with the specific pollutant
Cadmium and arsenic affect root development in Oryza sativa L. negatively interacting with auxin
Cadmium (Cd) and arsenic (As), non essential, but toxic, elements for animals and plants are frequently present in paddy fields. Oryza sativa L., a staple food for at least the half of world population, easily absorbs As and Cd by the root, and in this organ the pollutants evoke consistent damages, reducing/modifying the root system. Auxins are key hormones in regulating all developmental processes, including root organogenesis. Moreover, plants respond to environmental stresses, such as those caused by Cd and As, by changing levels and distribution of endogenous phytohormones. Even though the effects of Cd and As on the roots have been investigated in some species, it remains necessary to deepen the knowledge about the cross-talk between these toxic elements and auxin during root formation and development, in particular in agronomically important plants, such as rice. Hence, the research goal was to investigate the interactions between Cd and As, alone or combined, and auxin during the development of rice roots. To reach the aim, morphological, histological and histochemical analyses were carried out on seedlings, exposed or not to Cd and/or As, belonging to the wild type and transgenic lines useful for monitoring indole-3-acetic acid (IAA) localization, i.e., OsDR5:GUS, and IAA cellular influx and efflux, i.e., OsAUX1:GUS and OsPIN5b:GUS. Moreover, the transcript levels of the YUCCA2 and ASA2, IAA biosynthetic genes were also monitored in Cd and/or As exposed wild type seedlings. The results highlight that As and Cd affect cyto-histology and morphology of the roots. In particular, they alter the lateral root primordia organization and development with negative consequences on root system architecture. This is due to a disturbance of IAA biosynthesis and transport, as indicated by the altered expression of both ASA2 and YUCCA2 biosynthetic genes, and AUX1 and PIN5b transporter genes
Computer simulation of the phase diagram for a fluid confined in a fractal and disordered porous material
We present a grand canonical Monte Carlo simulation study of the phase
diagram of a Lennard-Jones fluid adsorbed in a fractal and highly porous
aerogel. The gel environment is generated from an off-lattice diffusion limited
cluster-cluster aggregation process. Simulations have been performed with the
multicanonical ensemble sampling technique. The biased sampling function has
been obtained by histogram reweighting calculations. Comparing the confined and
the bulk system liquid-vapor coexistence curves we observe a decrease of both
the critical temperature and density in qualitative agreement with experiments
and other Monte Carlo studies on Lennard-Jones fluids confined in random
matrices of spheres. At variance with these numerical studies we do not observe
upon confinement a peak on the liquid side of the coexistence curve associated
with a liquid-liquid phase coexistence. In our case only a shouldering of the
coexistence curve appears upon confinement. This shoulder can be associated
with high density fluctuations in the liquid phase. The coexisting vapor and
liquid phases in our system show a high degree of spatial disorder and
inhomogeneity.Comment: 8 pages, 8 figures, to be published in Phys. Rev.
Confined water in the low hydration regime
Molecular dynamics results on water confined in a silica pore in the low
hydration regime are presented. Strong layering effects are found due to the
hydrophilic character of the substrate. The local properties of water are
studied as function of both temperature and hydration level. The interaction of
the thin films of water with the silica atoms induces a strong distortion of
the hydrogen bond network. The residence time of the water molecules is
dependent on the distance from the surface. Its behavior shows a transition
from a brownian to a non-brownian regime approaching the substrate in agreement
with results found in studies of water at contact with globular proteins.Comment: 7 pages with 12 figures (RevTeX4). To be published on J. Chem. Phy
Random sequential adsorption and diffusion of dimers and k-mers on a square lattice
We have performed extensive simulations of random sequential adsorption and
diffusion of -mers, up to in two dimensions with particular attention
to the case . We focus on the behavior of the coverage and of vacancy
dynamics as a function of time. We observe that for a complete coverage
of the lattice is never reached, because of the existence of frozen
configurations that prevent isolated vacancies in the lattice to join. From
this result we argue that complete coverage is never attained for any value of
. The long time behavior of the coverage is not mean field and nonanalytic,
with as leading term. Long time coverage regimes are independent of
the initial conditions while strongly depend on the diffusion probability and
deposition rate and, in particular, different values of these parameters lead
to different final values of the coverage. The geometrical complexity of these
systems is also highlighted through an investigation of the vacancy population
dynamics.Comment: 9 pages, 9 figures, to be published in the Journal of Chemical
Physic
Spinodal of supercooled polarizable water
We develop a series of molecular dynamics computer simulations of liquid
water, performed with a polarizable potential model, to calculate the spinodal
line and the curve of maximum density inside the metastable supercooled region.
After analysing the structural properties,the liquid spinodal line is followed
down to T=210 K. A monotonic decrease is found in the explored region. The
curve of maximum density bends on approaching the spinodal line. These results,
in agreement with similar studies on non polarizable models of water, are
consistent with the existence of a second critical point for water.Comment: 8 pages, 5 figures, 2 tables. To be published in Phys. Re
- …
