29 research outputs found
A Control And Data Acquisition System Based On The PXI Bus For The New Photon Beam Position Monitor Prototype
Reactor as a Source of Antineutrinos: Thermal Fission Energy
Deeper insight into the features of a reactor as a source of antineutrinos is
required for making further advances in studying the fundamental properties of
the neutrino. The relationship between the thermal power of a reactor and the
rate of the chain fission reaction in its core is analyzed.Comment: 15 pages in LaTex and 4 ps figure
Probing the matter term at long baseline experiments
We consider (\nu_\mu --> \nu_e) oscillations in long baseline experiments
within a three flavor framework. A non-zero measurement of this oscillation
probability implies that the (13) mixing angle `phi' is non-zero. We consider
the effect of neutrino propagation through the matter of earth's crust and show
that, given the constraints from solar neutrino and CHOOZ data, matter effects
enhance the mixing for neutrinos rather than for anti-neutrinos. We need data
from two different experiments with different baseline lengths (such as K2K and
MINOS) to distinguish matter effects unambiguously.Comment: 9 pages including three figure
Testing whether muon neutrino flavor mixing is maximal
The small difference between the survival probabilities of muon neutrino and
antineutrino beams, traveling through earth matter in a long baseline
experiment such as MINOS, is shown to be an important measure of any possible
deviation from maximality in the flavor mixing of those states.Comment: Some revision has been made in the experimental discussions with two
new figures replacing the old ones and a clarification of the accuracy of the
perturbative result has been included. This version will be published in
Physical Review Letters. Title changed as asked by the editors of Physical
Review Letter
Constraints on mixing angles of Majorana neutrinos
By combining the inputs from the neutrinoless double beta decay and the fits
of cosmological models of dark matter with solar and atmospheric neutrino data,
we obtain constraints on two of the mixing angles of Majorana neutrinos, which
become stronger when coupled with the reactor neutrino data. These constraints
are strong enough to rule out Majorana neutrinos if the small angle solution of
solar neutrino puzzle is borne out.Comment: Some corrections and clarifications adde
Three Generation Neutrino Oscillation Parameters after SNO
We examine the solar neutrino problem in the context of the realistic three
neutrino mixing scenario including the SNO charged current (CC) rate. The two
independent mass squared differences and are taken to be in the solar and atmospheric ranges
respectively. We incorporate the constraints on m as obtained
by the SuperKamiokande atmospheric neutrino data and determine the allowed
values of , and from a combined
analysis of solar and CHOOZ data. Our aim is to probe the changes in the values
of the mass and mixing parameters with the inclusion of the SNO data as well as
the changes in the two-generation parameter region obtained from the solar
neutrino analysis with the inclusion of the third generation. We find that the
inclusion of the SNO CC rate in the combined solar + CHOOZ analysis puts a more
restrictive bound on . Since the allowed values of
are constrained to very small values by the CHOOZ experiment there is no
qualitative change over the two generation allowed regions in the plane. The best-fit comes in the LMA region and
no allowed area is obtained in the SMA region at 3 level from combined
solar and CHOOZ analysis.Comment: One reference added. Version to apprear in PR
Impact of CP phases on neutrinoless double beta decay
We highlight in a model independent way the dependence of the effective
Majorana mass parameter, relevant for neutrinoless double beta decay, on the CP
phases of the PMNS matrix, using the most recent neutrino data including the
cosmological WMAP measurement. We perform our analysis with three active
neutrino flavours in the context of three kinds of mass spectra:
quasi-degenerate, normal hierarchical and inverted hierarchical. If a
neutrinoless double beta decay experiment records a positive signal, then
assuming that Majorana masses of light neutrinos are responsible for it, we
show how it might be possible to discriminate between the three kinds of
spectra.Comment: 10 pages, latex, 9 eps figs, version to appear in Phys Rev
Lepton number violating interactions and their effects on neutrino oscillation experiments
Mixing between bosons that transform differently under the standard model
gauge group, but identically under its unbroken subgroup, can induce
interactions that violate the total lepton number. We discuss four-fermion
operators that mediate lepton number violating neutrino interactions both in a
model-independent framework and within supersymmetry (SUSY) without R-parity.
The effective couplings of such operators are constrained by: i) the upper
bounds on the relevant elementary couplings between the bosons and the
fermions, ii) by the limit on universality violation in pion decays, iii) by
the data on neutrinoless double beta decay and, iv) by loop-induced neutrino
masses. We find that the present bounds imply that lepton number violating
neutrino interactions are not relevant for the solar and atmospheric neutrino
problems. Within SUSY without R-parity also the LSND anomaly cannot be
explained by such interactions, but one cannot rule out an effect
model-independently. Possible consequences for future terrestrial neutrino
oscillation experiments and for neutrinos from a supernova are discussed.Comment: 28 pages, 2 figures, Late
Implications of a Massless Neutralino for Neutrino Physics
We consider the phenomenological implications of a soft SUSY breaking term BN
at the TeV scale (here B is the U(1)_Y gaugino and N is the right-handed
neutrino field). In models with a massless (or nearly massless) neutralino,
such a term will give rise through the see-saw mechanism to new contributions
to the mass matrix of the light neutrinos.
We treat the massless neutralino as an (almost) sterile neutrino and find
that its mass depends on the square of the soft SUSY breaking scale, with
interesting consequences for neutrino physics. We also show that, although it
requires fine-tuning, a massless neutralino in the MSSM or NMSSM is not
experimentally excluded. The implications of this scenario for neutrino physics
are discussed.Comment: 14 pages, latex, no figure
