644 research outputs found
Inclusion of turbulence in solar modeling
The general consensus is that in order to reproduce the observed solar p-mode
oscillation frequencies, turbulence should be included in solar models.
However, until now there has not been any well-tested efficient method to
incorporate turbulence into solar modeling. We present here two methods to
include turbulence in solar modeling within the framework of the mixing length
theory, using the turbulent velocity obtained from numerical simulations of the
highly superadiabatic layer of the sun at three stages of its evolution. The
first approach is to include the turbulent pressure alone, and the second is to
include both the turbulent pressure and the turbulent kinetic energy. The
latter is achieved by introducing two variables: the turbulent kinetic energy
per unit mass, and the effective ratio of specific heats due to the turbulent
perturbation. These are treated as additions to the standard thermodynamic
coordinates (e.g. pressure and temperature). We investigate the effects of both
treatments of turbulence on the structure variables, the adiabatic sound speed,
the structure of the highly superadiabatic layer, and the p-mode frequencies.
We find that the second method reproduces the SAL structure obtained in 3D
simulations, and produces a p-mode frequency correction an order of magnitude
better than the first method.Comment: 10 pages, 12 figure
Does the Sun shrink with increasing magnetic activity?
It has been demonstrated that frequencies of f-modes can be used to estimate
the solar radius to a good accuracy. These frequencies have been used to study
temporal variations in the solar radius with conflicting results. The variation
in f-mode frequencies is more complicated than what is assumed in these
studies. If a careful analysis is performed then it turns out that there is no
evidence for any variation in the solar radius.Comment: To appear in Astrophys.
Obstructed and channelized viscoplastic flow in a Hele-Shaw cell
A theoretical study is presented of the flow of viscoplastic fluid through a Hele-Shaw cell that contains various kinds of obstructions. Circular and elliptical blockages of the cell are considered together with stepwise contractions or expansions in slot width, all within the simplifying approximation of a narrow gap. Specific attention is paid to the flow patterns that develop around the obstacles, particularly any stagnant plugged regions, and the asymptotic limits of relatively small or large yield stress. Periodic arrays of circular contractions or expansions are studied to explore the interference between obstructions. Finally, viscoplastic flow through a cell with randomly roughened walls is examined, and it is shown that constructive interference of local contractions and expansions leads to a pronounced channelization of the flow. An optimization algorithm based on minimization of the pressure drop is derived to construct the path of the channels in the limit of relatively large yield stress or, equivalently, relatively slow flow.D.R.H. is grateful to the Killam Foundation for a Postdoctoral Fellowship.This is the author accepted manuscript. The final version is available from Cambridge University Press via http://dx.doi.org/10.1017/jfm.2016.
Solar-like oscillations of semiregular variables
Oscillations of the Sun and solar-like stars are believed to be excited
stochastically by convection near the stellar surface. Theoretical modeling
predicts that the resulting amplitude increases rapidly with the luminosity of
the star. Thus one might expect oscillations of substantial amplitudes in red
giants with high luminosities and vigorous convection. Here we present evidence
that such oscillations may in fact have been detected in the so-called
semiregular variables, extensive observations of which have been made by
amateur astronomers in the American Association for Variable Star Observers
(AAVSO). This may offer a new opportunity for studying the physical processes
that give rise to the oscillations, possibly leading to further information
about the properties of convection in these stars.Comment: Astrophys. J. Lett., in the press. Processed with aastex and
emulateap
A shallow-water theory for annular sections of Keplerian Disks
A scaling argument is presented that leads to a shallow water theory of
non-axisymmetric disturbances in annular sections of thin Keplerian disks. To
develop a theoretical construction that will aid in physically understanding
the relationship of known two-dimensional vortex dynamics to their
three-dimensional counterparts in Keplerian disks. Using asymptotic scaling
arguments varicose disturbances of a Keplerian disk are considered on radial
and vertical scales consistent with the height of the disk while the azimuthal
scales are the full angular extent of the disk. The scalings lead to
dynamics which are radially geostrophic and vertically hydrostatic. It follows
that a potential vorticity quantity emerges and is shown to be conserved in a
Lagrangian sense. Uniform potential vorticity linear solutions are explored and
the theory is shown to contain an incarnation of the strato-rotational
instability under channel flow conditions. Linearized solutions of a single
defect on an infinite domain is developed and is shown to support a propagating
Rossby edgewave. Linear non-uniform potential vorticity solutions are also
developed and are shown to be similar in some respects to the dynamics of
strictly two-dimensional inviscid flows. Based on the framework of this theory,
arguments based on geophysical notions are presented to support the assertion
that the strato-rotational instability is in a generic class of
barotropic/baroclinic potential vorticity instabilities. Extensions of this
formalism are also proposed. The shallow water formulation achieved by the
asymptotic theory developed here opens a new approach to studying disk
dynamics.Comment: Accepted (July 21, 2008), now in final for
Obstructed and channelized viscoplastic flow in a Hele-Shaw cell
A theoretical study is presented of the flow of viscoplastic fluid through a Hele-Shaw cell that contains various kinds of obstructions. Circular and elliptical blockages of the cell are considered together with stepwise contractions or expansions in slot width, all within the simplifying approximation of a narrow gap. Specific attention is paid to the flow patterns that develop around the obstacles, particularly any stagnant plugged regions, and the asymptotic limits of relatively small or large yield stress. Periodic arrays of circular contractions or expansions are studied to explore the interference between obstructions. Finally, viscoplastic flow through a cell with randomly roughened walls is examined, and it is shown that constructive interference of local contractions and expansions leads to a pronounced channelization of the flow. An optimization algorithm based on minimization of the pressure drop is derived to construct the path of the channels in the limit of relatively large yield stress or, equivalently, relatively slow flow.D.R.H. is grateful to the Killam Foundation for a Postdoctoral Fellowship.This is the author accepted manuscript. The final version is available from Cambridge University Press via http://dx.doi.org/10.1017/jfm.2016.
Space and Ground Based Pulsation Data of Eta Bootis Explained with Stellar Models Including Turbulence
The space telescope MOST is now providing us with extremely accurate low
frequency p-mode oscillation data for the star Eta Boo. We demonstrate in this
paper that these data, when combined with ground based measurements of the high
frequency p-mode spectrum, can be reproduced with stellar models that include
the effects of turbulence in their outer layers. Without turbulence, the l=0
modes of our models deviate from either the ground based or the space data by
about 1.5-4.0 micro Hz. This discrepancy can be completely removed by including
turbulence in the models and we can exactly match 12 out of 13 MOST frequencies
that we identified as l=0 modes in addition to 13 out of 21 ground based
frequencies within their observational 2 sigma tolerances. The better agreement
between model frequencies and observed ones depends for the most part on the
turbulent kinetic energy which was taken from a 3D convection simulation for
the Sun.Comment: 13 pages, 7 figures, ApJ in pres
Solar Oscillations and Convection: II. Excitation of Radial Oscillations
Solar p-mode oscillations are excited by the work of stochastic,
non-adiabatic, pressure fluctuations on the compressive modes. We evaluate the
expression for the radial mode excitation rate derived by Nordlund and Stein
(Paper I) using numerical simulations of near surface solar convection. We
first apply this expression to the three radial modes of the simulation and
obtain good agreement between the predicted excitation rate and the actual mode
damping rates as determined from their energies and the widths of their
resolved spectral profiles. We then apply this expression for the mode
excitation rate to the solar modes and obtain excellent agreement with the low
l damping rates determined from GOLF data. Excitation occurs close to the
surface, mainly in the intergranular lanes and near the boundaries of granules
(where turbulence and radiative cooling are large). The non-adiabatic pressure
fluctuations near the surface are produced by small instantaneous local
imbalances between the divergence of the radiative and convective fluxes near
the solar surface. Below the surface, the non-adiabatic pressure fluctuations
are produced primarily by turbulent pressure fluctuations (Reynolds stresses).
The frequency dependence of the mode excitation is due to effects of the mode
structure and the pressure fluctuation spectrum. Excitation is small at low
frequencies due to mode properties -- the mode compression decreases and the
mode mass increases at low frequency. Excitation is small at high frequencies
due to the pressure fluctuation spectrum -- pressure fluctuations become small
at high frequencies because they are due to convection which is a long time
scale phenomena compared to the dominant p-mode periods.Comment: Accepted for publication in ApJ (scheduled for Dec 10, 2000 issue).
17 pages, 27 figures, some with reduced resolution -- high resolution
versions available at http://www.astro.ku.dk/~aake/astro-ph/0008048
Probing Solar Convection
In the solar convection zone acoustic waves are scattered by turbulent sound
speed fluctuations. In this paper the scattering of waves by convective cells
is treated using Rytov's technique. Particular care is taken to include
diffraction effects which are important especially for high-degree modes that
are confined to the surface layers of the Sun. The scattering leads to damping
of the waves and causes a phase shift. Damping manifests itself in the width of
the spectral peak of p-mode eigenfrequencies. The contribution of scattering to
the line widths is estimated and the sensitivity of the results on the assumed
spectrum of the turbulence is studied. Finally the theoretical predictions are
compared with recently measured line widths of high-degree modes.Comment: 26 pages, 7 figures, accepted by MNRA
Linear dynamics of weakly viscous accretion disks: A disk analog of Tollmien-Schlichting waves
This paper discusses new perspectives and approaches to the problem of disk
dynamics where, in this study, we focus on the effects of viscous instabilities
influenced by boundary effects. The Boussinesq approximation of the viscous
large shearing box equations is analyzed in which the azimuthal length scale of
the disturbance is much larger than the radial and vertical scales. We examine
the stability of a non-axisymmetric potential vorticity mode, i.e. a
PV-anomaly. in a configuration in which buoyant convection and the
strato-rotational instability do not to operate. We consider a series of
boundary conditions which show the PV-anomaly to be unstable both on a finite
and semi-infinite radial domains. We find these conditions leading to an
instability which is the disk analog of Tollmien-Schlichting waves. When the
viscosity is weak, evidence of the instability is most pronounced by the
emergence of a vortex sheet at the critical layer located away from the
boundary where the instability is generated. For some boundary conditions a
necessary criterion for the onset of instability for vertical wavelengths that
are a sizable fraction of the layer's thickness and when the viscosity is small
is that the appropriate Froude number of the flow be greater than one. This
instability persists if more realistic boundary conditions are applied,
although the criterion on the Froude number is more complicated. The unstable
waves studied here share qualitative features to the instability seen in
rotating Blasius boundary layers. The implications of these results are
discussed. An overall new strategy for exploring and interpreting disk
instability mechanisms is also suggested.Comment: Accepted for publication in Astronomy and Astrophysics. 18 pages.
This version 3 with corrected style fil
- …
