610 research outputs found

    Discrete molecular dynamics simulations of peptide aggregation

    Get PDF
    We study the aggregation of peptides using the discrete molecular dynamics simulations. At temperatures above the alpha-helix melting temperature of a single peptide, the model peptides aggregate into a multi-layer parallel beta-sheet structure. This structure has an inter-strand distance of 0.48 nm and an inter-sheet distance of 1.0 nm, which agree with experimental observations. In this model, the hydrogen bond interactions give rise to the inter-strand spacing in beta-sheets, while the Go interactions among side chains make beta-strands parallel to each other and allow beta-sheets to pack into layers. The aggregates also contain free edges which may allow for further aggregation of model peptides to form elongated fibrils.Comment: 15 pages, 8 figure

    Reading aloud boosts connectivity through the putamen

    Get PDF
    Functional neuroimaging and lesion studies have frequently reported thalamic and putamen activation during reading and speech production. However, it is currently unknown how activity in these structures interacts with that in other reading and speech production areas. This study investigates how reading aloud modulates the neuronal interactions between visual recognition and articulatory areas, when both the putamen and thalamus are explicitly included. Using dynamic causal modeling in skilled readers who were reading regularly spelled English words, we compared 27 possible pathways that might connect the ventral anterior occipito-temporal sulcus (aOT) to articulatory areas in the precentral cortex (PrC). We focused on whether the neuronal interactions within these pathways were increased by reading relative to picture naming and other visual and articulatory control conditions. The results provide strong evidence that reading boosts the aOT–PrC pathway via the putamen but not the thalamus. However, the putamen pathway was not exclusive because there was also evidence for another reading pathway that did not involve either the putamen or the thalamus. We conclude that the putamen plays a special role in reading but this is likely to vary with individual reading preferences and strategies

    Asymmetric spatial structure of zero modes for birefringent Dirac fermions

    Full text link
    We study the zero energy modes that arise in an unusual vortex configuration involving both the kinetic energy and an appropriate mass term in a model which exhibits birefringent Dirac fermions as its low energy excitations. We find the surprising feature that the ratio of the length scales associated with states centered on vortex and anti-vortex topological defects can be arbitrarily varied but that fractionalization of quantum numbers such as charge is unaffected. We discuss this situation from a symmetry point of view and present numerical results for a specific lattice model realization of this scenario.Comment: 7 pages, 6 figure

    Human leukocyte antigen supertype matching after myeloablative hematopoietic cell transplantation with 7/8 matched unrelated donor allografts: a report from the Center for International Blood and Marrow Transplant Research

    Get PDF
    The diversity of the human leukocyte antigen (HLA) class I and II alleles can be simplified by consolidating them into fewer supertypes based on functional or predicted structural similarities in epitope-binding grooves of HLA molecules. We studied the impact of matched and mismatched HLA-A (265 versus 429), -B (230 versus 92), -C (365 versus 349), and -DRB1 (153 versus 51) supertypes on clinical outcomes of 1934 patients with acute leukemias or myelodysplasia/myeloproliferative disorders. All patients were reported to the Center for International Blood and Marrow Transplant Research following single-allele mismatched unrelated donor myeloablative conditioning hematopoietic cell transplantation. Single mismatched alleles were categorized into six HLA-A (A01, A01A03, A01A24, A02, A03, A24), six HLA-B (B07, B08, B27, B44, B58, B62), two HLA-C (C1, C2), and five HLA-DRB1 (DR1, DR3, DR4, DR5, DR9) supertypes. Supertype B mismatch was associated with increased risk of grade II-IV acute graft-versus-host disease (hazard ratio =1.78, P=0.0025) compared to supertype B match. Supertype B07-B44 mismatch was associated with a higher incidence of both grade II-IV (hazard ratio=3.11, P=0.002) and III-IV (hazard ratio=3.15, P=0.01) acute graft-versus-host disease. No significant associations were detected between supertype-matched versus -mismatched groups at other HLA loci. These data suggest that avoiding HLA-B supertype mismatches can mitigate the risk of grade II-IV acute graft-versus-host disease in 7/8-mismatched unrelated donor hematopoietic cell transplantation when multiple HLA-B supertype-matched donors are available. Future studies are needed to define the mechanisms by which supertype mismatching affects outcomes after alternative donor hematopoietic cell transplantation

    Fludarabine-Based Reduced Intensity Conditioning for Stem Cell Transplantation of Fanconi Anemia Patients from Fully Matched Related and Unrelated Donors

    Get PDF
    AbstractReduced intensity conditioning has been suggested as a desirable therapeutic modality for the treatment of patients with malignant and nonmalignant indications, but it seems particularly attractive for patients with Fanconi anemia due to their increased sensitivity to chemoradiotherapy. Between November 1996 and September 2003, 7 patients (1 male and 6 female; age range, 3-31 years; median age, 9.5) were conditioned with a fludarabine-based protocol for stem cell transplantation without radiation. In vivo T-cell depletion was accomplished with anti-thymocytic globulin or Campath-1H (alemtuzumab). Graft-versus-host disease prophylaxis consisted of low-dose cyclosporine alone. Eight transplantations were carried out for 7 patients using bone marrow, peripheral blood, and/or cord blood as sources of stem cells. All patients received transplants from HLA-A, -B, -C, and -DR matched donors, 5 from family members and 2 from matched unrelated donors. One patient did not engraft her first matched unrelated donor and underwent a second transplantation from another matched unrelated donor, after which she engrafted well. All 7 patients are alive and well, fully reconstituted with donor cells, and with 100% performance status. In conclusion, fludarabine-based preparative protocols are well tolerated, facilitate rapid engraftment with minimal toxicity, and should be considered an essential component of choice for patients with Fanconi anemia

    A critical role for the self-assembly of Amyloid-β1-42 in neurodegeneration

    Get PDF
    Amyloid β1-42 (Aβ1-42) plays a central role in Alzheimer’s disease. The link between structure, assembly and neuronal toxicity of this peptide is of major current interest but still poorly defined. Here, we explored this relationship by rationally designing a variant form of Aβ1-42 (vAβ1-42) differing in only two amino acids. Unlike Aβ1-42, we found that the variant does not self-assemble, nor is it toxic to neuronal cells. Moreover, while Aβ1-42 oligomers impact on synaptic function, vAβ1-42 does not. In a living animal model system we demonstrate that only Aβ1-42 leads to memory deficits. Our findings underline a key role for peptide sequence in the ability to assemble and form toxic structures. Furthermore, our non-toxic variant satisfies an unmet demand for a closely related control peptide for Aβ1-42 cellular studies of disease pathology, offering a new opportunity to decipher the mechanisms that accompany Aβ1-42-induced toxicity leading to neurodegeneration

    The confluence of fractured resonances at points of dynamical, many--body flare

    Full text link
    Resonant transport occurs when there is a matching of frequencies across some spatial medium, increasing the efficiency of shuttling particles from one reservoir to another. We demonstrate that in a periodically driven, many--body titled lattice there are sets of spatially fractured resonances. These ``emanate'' from two essential resonances due to scattering off internal surfaces created when the driving frequency and many--body interaction strength vary, a scattering reminiscent of lens flare. The confluence of these fractured resonances dramatically enhances transport. At one confluence, the interaction strength is finite and the essential resonance arises due to the interplay of interaction with the counter--rotating terms of the periodic drive. The other forms where several paths split by the many--body interaction merge in the non--interacting limit. We discuss the origin and structure of the fractured resonances, as well as the scaling of the conductance on system parameters. These results furnish a new example of the richness of open, driven, many--body systems.Comment: comments welcome
    corecore