1,421 research outputs found
INFN Camera demonstrator for the Cherenkov Telescope Array
The Cherenkov Telescope Array is a world-wide project for a new generation of
ground-based Cherenkov telescopes of the Imaging class with the aim of
exploring the highest energy region of the electromagnetic spectrum. With two
planned arrays, one for each hemisphere, it will guarantee a good sky coverage
in the energy range from a few tens of GeV to hundreds of TeV, with improved
angular resolution and a sensitivity in the TeV energy region better by one
order of magnitude than the currently operating arrays. In order to cover this
wide energy range, three different telescope types are envisaged, with
different mirror sizes and focal plane features. In particular, for the highest
energies a possible design is a dual-mirror Schwarzschild-Couder optical
scheme, with a compact focal plane. A silicon photomultiplier (SiPM) based
camera is being proposed as a solution to match the dimensions of the pixel
(angular size of ~ 0.17 degrees). INFN is developing a camera demonstrator made
by 9 Photo Sensor Modules (PSMs, 64 pixels each, with total coverage 1/4 of the
focal plane) equipped with FBK (Fondazione Bruno Kessler, Italy) Near
UltraViolet High Fill factor SiPMs and Front-End Electronics (FEE) based on a
Target 7 ASIC, a 16 channels fast sampler (up to 2GS/s) with deep buffer,
self-trigger and on-demand digitization capabilities specifically developed for
this purpose. The pixel dimensions of mm lead to a very compact
design with challenging problems of thermal dissipation. A modular structure,
made by copper frames hosting one PSM and the corresponding FEE, has been
conceived, with a water cooling system to keep the required working
temperature. The actual design, the adopted technical solutions and the
achieved results for this demonstrator are presented and discussed.Comment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherlands. All CTA contributions at
arXiv:1508.0589
Reconstruction of the gravitational wave signal during the Virgo science runs and independent validation with a photon calibrator
The Virgo detector is a kilometer-scale interferometer for gravitational wave
detection located near Pisa (Italy). About 13 months of data were accumulated
during four science runs (VSR1, VSR2, VSR3 and VSR4) between May 2007 and
September 2011, with increasing sensitivity.
In this paper, the method used to reconstruct, in the range 10 Hz-10 kHz, the
gravitational wave strain time series from the detector signals is
described. The standard consistency checks of the reconstruction are discussed
and used to estimate the systematic uncertainties of the signal as a
function of frequency. Finally, an independent setup, the photon calibrator, is
described and used to validate the reconstructed signal and the
associated uncertainties.
The uncertainties of the time series are estimated to be 8% in
amplitude. The uncertainty of the phase of is 50 mrad at 10 Hz with a
frequency dependence following a delay of 8 s at high frequency. A bias
lower than and depending on the sky direction of the GW is
also present.Comment: 35 pages, 16 figures. Accepted by CQ
Recommended from our members
Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model
We present results from a semicoherent search for continuous gravitational
waves from the low-mass X-ray binary Scorpius X-1, using a hidden Markov model
(HMM) to track spin wandering. This search improves on previous HMM-based
searches of LIGO data by using an improved frequency domain matched filter, the
-statistic, and by analysing data from Advanced LIGO's second
observing run. In the frequency range searched, from to
, we find no evidence of gravitational radiation. At
, the most sensitive search frequency, we report an upper
limit on gravitational wave strain (at 95\% confidence) of when marginalising over source inclination angle. This is the
most sensitive search for Scorpius X-1, to date, that is specifically designed
to be robust in the presence of spin wandering
Search for gravitational waves associated with the InterPlanetary Network short gamma ray bursts
We outline the scientific motivation behind a search for gravitational waves
associated with short gamma ray bursts detected by the InterPlanetary Network
(IPN) during LIGO's fifth science run and Virgo's first science run. The IPN
localisation of short gamma ray bursts is limited to extended error boxes of
different shapes and sizes and a search on these error boxes poses a series of
challenges for data analysis. We will discuss these challenges and outline the
methods to optimise the search over these error boxes.Comment: Methods paper; Proceedings for Eduardo Amaldi 9 Conference on
Gravitational Waves, July 2011, Cardiff, U
First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of
continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a
fully coherent search, based on matched filtering, which uses the position and rotational parameters
obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto-
noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch
between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have
been developed, allowing a fully coherent search for gravitational waves from known pulsars over a
fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of
11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial
outliers, further studies show no significant evidence for the presence of a gravitational wave signal.
Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of
the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for
the first time. For an additional 3 targets, the median upper limit across the search bands is below the
spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried
out so far
Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts
Aims. A transient astrophysical event observed in both gravitational wave
(GW) and electromagnetic (EM) channels would yield rich scientific rewards. A
first program initiating EM follow-ups to possible transient GW events has been
developed and exercised by the LIGO and Virgo community in association with
several partners. In this paper, we describe and evaluate the methods used to
promptly identify and localize GW event candidates and to request images of
targeted sky locations.
Methods. During two observing periods (Dec 17 2009 to Jan 8 2010 and Sep 2 to
Oct 20 2010), a low-latency analysis pipeline was used to identify GW event
candidates and to reconstruct maps of possible sky locations. A catalog of
nearby galaxies and Milky Way globular clusters was used to select the most
promising sky positions to be imaged, and this directional information was
delivered to EM observatories with time lags of about thirty minutes. A Monte
Carlo simulation has been used to evaluate the low-latency GW pipeline's
ability to reconstruct source positions correctly.
Results. For signals near the detection threshold, our low-latency algorithms
often localized simulated GW burst signals to tens of square degrees, while
neutron star/neutron star inspirals and neutron star/black hole inspirals were
localized to a few hundred square degrees. Localization precision improves for
moderately stronger signals. The correct sky location of signals well above
threshold and originating from nearby galaxies may be observed with ~50% or
better probability with a few pointings of wide-field telescopes.Comment: 17 pages. This version (v2) includes two tables and 1 section not
included in v1. Accepted for publication in Astronomy & Astrophysic
Sensitivity to Gravitational Waves from Compact Binary Coalescences Achieved during LIGO's Fifth and Virgo's First Science Run
We summarize the sensitivity achieved by the LIGO and Virgo gravitational
wave detectors for compact binary coalescence (CBC) searches during LIGO's
fifth science run and Virgo's first science run. We present noise spectral
density curves for each of the four detectors that operated during these
science runs which are representative of the typical performance achieved by
the detectors for CBC searches. These spectra are intended for release to the
public as a summary of detector performance for CBC searches during these
science runs.Comment: 12 pages, 5 figure
Virgo calibration and reconstruction of the gravitational wave strain during VSR1
Virgo is a kilometer-length interferometer for gravitational waves detection
located near Pisa. Its first science run, VSR1, occured from May to October
2007. The aims of the calibration are to measure the detector sensitivity and
to reconstruct the time series of the gravitational wave strain h(t). The
absolute length calibration is based on an original non-linear reconstruction
of the differential arm length variations in free swinging Michelson
configurations. It uses the laser wavelength as length standard. This method is
used to calibrate the frequency dependent response of the Virgo mirror
actuators and derive the detector in-loop response and sensitivity within ~5%.
The principle of the strain reconstruction is highlighted and the h(t)
systematic errors are estimated. A photon calibrator is used to check the sign
of h(t). The reconstructed h(t) during VSR1 is valid from 10 Hz up to 10 kHz
with systematic errors estimated to 6% in amplitude. The phase error is
estimated to be 70 mrad below 1.9 kHz and 6 micro-seconds above.Comment: 8 pages, 8 figures, proceedings of Amaldi 8 conference, to be
published in Journal of Physics Conference Series (JPCS). Second release:
correct typo
The major upgrade of the MAGIC telescopes, Part II: A performance study using observations of the Crab Nebula
MAGIC is a system of two Imaging Atmospheric Cherenkov Telescopes located in
the Canary island of La Palma, Spain. During summer 2011 and 2012 it underwent
a series of upgrades, involving the exchange of the MAGIC-I camera and its
trigger system, as well as the upgrade of the readout system of both
telescopes. We use observations of the Crab Nebula taken at low and medium
zenith angles to assess the key performance parameters of the MAGIC stereo
system. For low zenith angle observations, the standard trigger threshold of
the MAGIC telescopes is ~50GeV. The integral sensitivity for point-like sources
with Crab Nebula-like spectrum above 220GeV is (0.66+/-0.03)% of Crab Nebula
flux in 50 h of observations. The angular resolution, defined as the sigma of a
2-dimensional Gaussian distribution, at those energies is < 0.07 degree, while
the energy resolution is 16%. We also re-evaluate the effect of the systematic
uncertainty on the data taken with the MAGIC telescopes after the upgrade. We
estimate that the systematic uncertainties can be divided in the following
components: < 15% in energy scale, 11-18% in flux normalization and +/-0.15 for
the energy spectrum power-law slope.Comment: 21 pages, 25 figures, accepted for publication in Astroparticle
Physic
Calibration and sensitivity of the Virgo detector during its second science run
The Virgo detector is a kilometer-length interferometer for gravitational
wave detection located near Pisa (Italy). During its second science run (VSR2)
in 2009, six months of data were accumulated with a sensitivity close to its
design. In this paper, the methods used to determine the parameters for
sensitivity estimation and gravitational wave reconstruction are described. The
main quantities to be calibrated are the frequency response of the mirror
actuation and the sensing of the output power. Focus is also put on their
absolute timing. The monitoring of the calibration data as well as the
parameter estimation with independent techniques are discussed to provide an
estimation of the calibration uncertainties. Finally, the estimation of the
Virgo sensitivity in the frequency-domain is described and typical
sensitivities measured during VSR2 are shown.Comment: 30 pages, 23 figures, 1 table. Published in Classical and Quantum
Gravity (CQG), Corrigendum include
- …
