2 research outputs found
Hadron and hadron-cluster production in a hydrodynamical model including particle evaporation
We discuss the evolution of the mixed phase at RHIC and SPS within
boostinvariant hydrodynamics. In addition to the hydrodynamical expansion, we
also consider evaporation of particles off the surface of the fluid. The
back-reaction of the evaporation process on the dynamics of the fluid shortens
the lifetime of the mixed phase. In our model this lifetime of the mixed phase
is <12 fm/c in Au+Au at RHIC and <6.5 fm/c in Pb+Pb at SPS, even in the limit
of vanishing transverse expansion velocity. Strangeness separation occurs,
especially in events (or at rapidities) with relatively high initial net baryon
and strangeness number, enhancing the multiplicity of MEMOs (multiply strange
nuclear clusters). If antiquarks and antibaryons reach saturation in the course
of the pure QGP or mixed phase, we find that at RHIC the ratio of antideuterons
to deuterons may exceed 0.3 and even anti-helium to helium>0.1. Due to
fluctuations, at RHIC even negative baryon number at midrapidity is possible in
individual events, so that the antibaryon and antibaryon-cluster yields exceed
those of the corresponding baryons and clusters.Comment: 17 pages, Latex, epsfig stylefil
