516 research outputs found

    Large Transverse Momentum Jet Production and DIS Distributions of the Proton

    Get PDF
    We have calculated the single jet inclusive cross section as measured at Fermilab in next-to-leading order QCD using recent parton distributions of the CTEQ collaboration. We studied the scheme dependence of the jet cross section by employing the \overline{\mbox{MS}} and DIS factorization schemes consistently. For ET>200E_T > 200 GeV, we find that the cross section in the DIS scheme is larger than in the \overline{\mbox{MS}} scheme yielding a satisfactory description of the CDF data over the whole ETE_T range in the DIS scheme.Comment: 7 pages, latex, 2 figures include

    Extracting the Strange Density from xF3xF_3

    Full text link
    We present a QCD analysis of the strange and charm contributions to the neutrino deep inelastic structure function xF3xF_3. We show that next-to-leading order effects, which are relatively important for F2F_2, play a lesser role in the case of xF3xF_3. The neutrino--antineutrino difference xF3νxF3νˉxF_3^{\nu} - xF_3^{\bar \nu} provides a new determination of the strange density, which exhibits some advantages with respect to other traditional methods.Comment: 12 page

    Higher Twist Effects in the Drell-Yan Angular Distribution

    Full text link
    We study the Drell-Yan process πNμ+μX\pi N \rightarrow \mu^+ \mu^- X at large xFx_F using perturbative QCD. A higher-twist mechanism suggested by Berger and Brodsky is known to qualitatively explain the observed xFx_F dependence of the muon angular distribution, but the predicted large xFx_F behavior differs quantitatively from observations. We have repeated the model calculation taking into account the effects of nonasymptotic kinematics. At fixed-target energies we find important corrections which improve the agreement with data. The asymptotic result of Berger and Brodsky is recovered only at much higher energies. We discuss the generic reasons for the large corrections at high xFx_F. A proper understanding of the xF1x_F \to 1 data would give important information on the pion distribution amplitude and exclusive form factor.Comment: 8 pages in Latex with 3 figures appended as Postscript files, HU-TFT-94-12, LBL-35430. (The introductory part has been slightly altered and three references have been added

    Vector-pseudoscalar two-meson distribution amplitudes in three-body BB meson decays

    Full text link
    We study three-body nonleptonic decays BVVPB\to VVP by introducing two-meson distribution amplitudes for the vector-pseudoscalar pair, such that the analysis is simplified into the one for two-body decays. The twist-2 and twist-3 ϕK\phi K two-meson distribution amplitudes, associated with longitudinally and transversely polarized ϕ\phi mesons, are constrained by the experimental data of the τϕKν\tau\to\phi K\nu and BϕKγB\to\phi K\gamma branching ratios. We then predict the BϕKγB\to\phi K\gamma and BϕϕKB\to\phi\phi K decay spectra in the ϕK\phi K invariant mass. Since the resonant contribution in the ϕK\phi K channel is negligible, the above decay spectra provide a clean test for the application of two-meson distribution amplitudes to three-body BB meson decays.Comment: 9 pages, 1 figure, Revtex4, version to appear in PR

    Consistent Analysis of the BπB\to\pi Transition Form Factor in the Whole Physical Region

    Full text link
    In the paper, we show that the BπB\to\pi transition form factor can be calculated by using the different approach in the different q2q^2 regions and they are consistent with each other in the whole physical region. For the BπB\to\pi transition form factor in the large recoil regions, one can apply the PQCD approach, where the transverse momentum dependence for both the hard scattering part and the non-perturbative wavefunction, the Sudakov effects and the threshold effects are included to regulate the endpoint singularity and to derive a more reliable PQCD result. Pionic twist-3 contributions are carefully studied with a better endpoint behavior wavefunction for Ψp\Psi_p and we find that its contribution is less than the leading twist contribution. Both the two wavefunctions ΨB\Psi_B and ΨˉB\bar\Psi_B of the B meson can give sizable contributions to the BπB\to\pi transition form factor and should be kept for a better understanding of the B decays. The present obtained PQCD results can match with both the QCD light-cone sum rule results and the extrapolated lattice QCD results in the large recoil regions.Comment: 18pages, 6 figure

    Cost Analysis In A Multi-Mission Operations Environment

    Get PDF
    Spacecraft control centers have evolved from dedicated, single-mission or single missiontype support to multi-mission, service-oriented support for operating a variety of mission types. At the same time, available money for projects is shrinking and competition for new missions is increasing. These factors drive the need for an accurate and flexible model to support estimating service costs for new or extended missions; the cost model in turn drives the need for an accurate and efficient approach to service cost analysis. The National Aeronautics and Space Administration (NASA) Huntsville Operations Support Center (HOSC) at Marshall Space Flight Center (MSFC) provides operations services to a variety of customers around the world. HOSC customers range from launch vehicle test flights; to International Space Station (ISS) payloads; to small, short duration missions; and has included long duration flagship missions. The HOSC recently completed a detailed analysis of service costs as part of the development of a complete service cost model. The cost analysis process required the team to address a number of issues. One of the primary issues involves the difficulty of reverse engineering individual mission costs in a highly efficient multimission environment, along with a related issue of the value of detailed metrics or data to the cost model versus the cost of obtaining accurate data. Another concern is the difficulty of balancing costs between missions of different types and size and extrapolating costs to different mission types. The cost analysis also had to address issues relating to providing shared, cloud-like services in a government environment, and then assigning an uncertainty or risk factor to cost estimates that are based on current technology, but will be executed using future technology. Finally the cost analysis needed to consider how to validate the resulting cost models taking into account the non-homogeneous nature of the available cost data and the decreasing flight rate. This paper presents the issues encountered during the HOSC cost analysis process, and the associated lessons learned. These lessons can be used when planning for a new multi-mission operations center or in the transformation from a dedicated control center to multi-center operations, as an aid in defining processes that support future cost analysis and estimation. The lessons can also be used by mature serviceoriented, multi-mission control centers to streamline or refine their cost analysis process

    Wide-angle elastic scattering and color randomization

    Get PDF
    Baryon-baryon elastic scattering is considered in the independent scattering (Landshoff) mechanism. It is suggested that for scattering at moderate energies, direct and interchange quark channels contribute with equal color coefficients because the quark color is randomized by soft gluon exchange during the hadronization stage. With this assumption, it is shown that the ratio of cross sections Rpp/ppR_{\overline{p} p/ p p} at CM angle θ=900\theta = 90^0 decreases from a high energy value of R_{\pbar p / pp} \approx 1/2.7, down to R_{\pbar p / pp} \approx 1/28, compatible with experimental data at moderate energies. This sizable fall in the ratio seems to be characteristic of the Landshoff mechanism, in which changes at the quark level have a strong effect precisely because the hadronic process occurs via multiple quark scatterings. The effect of color randomization on the angular distribution of proton-proton elastic scattering and the cross section ratio Rnp/ppR_{np/pp} is also discussed.Comment: 18 pages, latex2e, 4 uuencoded figures, include

    A Model for the Twist-3 Wave Function of the Pion and Its Contribution to the Pion Form Factor

    Full text link
    A model for the twist-3 wave function ψp(x,k)\psi_p(x,\mathbf{k_\perp}) of the pion has been constructed based on the moment calculation by applying the QCD sum rules, whose distribution amplitude has a better end-point behavior than that of the asymptotic one. With this model wave function, the twist-3 contributions including both the usual helicity components (λ1+λ2=0\lambda_1+\lambda_2=0) and the higher helicity components (λ1+λ2=±1\lambda_1+\lambda_2=\pm 1) to the pion form factor have been studied within the modified pQCD approach. Our results show that the twist-3 contribution drops fast and it becomes less than the twist-2 contribution at Q210GeV2Q^2\sim 10GeV^2. The higher helicity components in the twist-3 wave function will give an extra suppression to the pion form factor. The model dependence of the twist-3 contribution to the pion form factor has been studied by comparing three different models. When all the power contributions, which include higher order in αs\alpha_s, higher helicities, higher twists in DA and etc., have been taken into account, it is expected that the hard contributions will fit the present experimental data well at the energy region where pQCD is applicable.Comment: 22pages,4 figures. Phys.Rev. D70, 093013(2004) (in press

    Multivariate Fitting and the Error Matrix in Global Analysis of Data

    Get PDF
    When a large body of data from diverse experiments is analyzed using a theoretical model with many parameters, the standard error matrix method and the general tools for evaluating errors may become inadequate. We present an iterative method that significantly improves the reliability of the error matrix calculation. To obtain even better estimates of the uncertainties on predictions of physical observables, we also present a Lagrange multiplier method that explores the entire parameter space and avoids the linear approximations assumed in conventional error propagation calculations. These methods are illustrated by an example from the global analysis of parton distribution functions.Comment: 13 pages, 5 figures, Latex; minor clarifications, fortran program made available; Normalization of Hessian matrix changed to HEP standar

    The target asymmetry in hard vector-meson electroproduction and parton angular momenta

    Full text link
    The target asymmetry for electroproduction of vector mesons is investigated within the handbag approach. While the generalized parton distribution (GPD) H is taken from a previous analysis of the elctroproduction cross section, we here construct the GPD E from double distributions and constrain it by the Pauli form factors of the nucleon, positivity bounds and sum rules. Predictions for the target asymmetry are given for various vector mesons and discussed how experimental data on the asymmetry will further constrain E and what we may learn about the angular momenta the partons carry.Comment: 24 pages, 11 figures, late
    corecore