376 research outputs found

    Co-enrolment of participants into multiple cancer trials: benefits and challenges

    Get PDF
    Opportunities to enter patients into more than one clinical trial are not routinely considered in cancer research and experiences with co-enrolment are rarely reported. Potential benefits of allowing appropriate co-enrolment have been identified in other settings but there is a lack of evidence base or guidance to inform these decisions in oncology. Here, we discuss the benefits and challenges associated with co-enrolment based on experiences in the Add-Aspirin trial – a large, multicentre trial recruiting across a number of tumour types, where opportunities to co-enrol patients have been proactively explored and managed. The potential benefits of co-enrolment include: improving recruitment feasibility; increased opportunities for patients to participate in trials; and collection of robust data on combinations of interventions, which will ensure the ongoing relevance of individual trials and provide more cohesive evidence to guide the management of future patients. There are a number of perceived barriers to co-enrolment in terms of scientific, safety and ethical issues, which warrant consideration on a trial-by-trial basis. In many cases, any potential effect on the results of the trials will be negligible – limited by a number of factors, including the overlap in trial cohorts. Participant representatives stress the importance of autonomy to decide about trial enrolment, providing a compelling argument for offering co-enrolment where there are multiple trials that are relevant to a patient and no concerns regarding safety or the integrity of the trials. A number of measures are proposed for managing and monitoring co-enrolment. Ensuring acceptability to (potential) participants is paramount. Opportunities to enter patients into more than one cancer trial should be considered more routinely. Where planned and managed appropriately, co-enrolment can offer a number of benefits in terms of both scientific value and efficiency of study conduct, and will increase the opportunities for patients to participate in, and benefit from, clinical research

    Mineral-PET: Kimberlite sorting by nuclear-medical technology

    Get PDF
    A revolutionary new technology for diamond bearing rock sorting which has its roots in medical-nuclear physics has been taken through a substantial part of the R&D phase. This has led to the construction of the technology demonstrator. Experiments using the technology demonstrator and experiments at a hospital have established the scientific and technological viability of the project

    A randomised comparison evaluating changes in bone mineral density in advanced prostate cancer: luteinising hormone-releasing hormone agonists versus transdermal oestradiol.

    Get PDF
    BACKGROUND: Luteinising hormone-releasing hormone agonists (LHRHa), used as androgen deprivation therapy (ADT) in prostate cancer (PCa) management, reduce serum oestradiol as well as testosterone, causing bone mineral density (BMD) loss. Transdermal oestradiol is a potential alternative to LHRHa. OBJECTIVE: To compare BMD change in men receiving either LHRHa or oestradiol patches (OP). DESIGN, SETTING, AND PARTICIPANTS: Men with locally advanced or metastatic PCa participating in the randomised UK Prostate Adenocarcinoma TransCutaneous Hormones (PATCH) trial (allocation ratio of 1:2 for LHRHa:OP, 2006-2011; 1:1, thereafter) were recruited into a BMD study (2006-2012). Dual-energy x-ray absorptiometry scans were performed at baseline, 1 yr, and 2 yr. INTERVENTIONS: LHRHa as per local practice, OP (FemSeven 100μg/24h patches). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The primary outcome was 1-yr change in lumbar spine (LS) BMD from baseline compared between randomised arms using analysis of covariance. RESULTS AND LIMITATIONS: A total of 74 eligible men (LHRHa 28, OP 46) participated from seven centres. Baseline clinical characteristics and 3-mo castration rates (testosterone ≤1.7 nmol/l, LHRHa 96% [26 of 27], OP 96% [43 of 45]) were similar between arms. Mean 1-yr change in LS BMD was -0.021g/cm(3) for patients randomised to the LHRHa arm (mean percentage change -1.4%) and +0.069g/cm(3) for the OP arm (+6.0%; p<0.001). Similar patterns were seen in hip and total body measurements. The largest difference between arms was at 2 yr for those remaining on allocated treatment only: LS BMD mean percentage change LHRHa -3.0% and OP +7.9% (p<0.001). CONCLUSIONS: Transdermal oestradiol as a single agent produces castration levels of testosterone while mitigating BMD loss. These early data provide further supporting evidence for the ongoing phase 3 trial. PATIENT SUMMARY: This study found that prostate cancer patients treated with transdermal oestradiol for hormonal therapy did not experience the loss in bone mineral density seen with luteinising hormone-releasing hormone agonists. Other clinical outcomes for this treatment approach are being evaluated in the ongoing PATCH trial. TRIAL REGISTRATION: ISRCTN70406718, PATCH trial (ClinicalTrials.gov NCT00303784)

    High-density information storage in an absolutely defined aperiodic sequence of monodisperse copolyester

    Get PDF
    Synthesis of a polymer composed of a large discrete number of chemically distinct monomers in an absolutely defined aperiodic sequence remains a challenge in polymer chemistry. The synthesis has largely been limited to oligomers having a limited number of repeating units due to the difficulties associated with the step-by-step addition of individual monomers to achieve high molecular weights. Here we report the copolymers of ??-hydroxy acids, poly(phenyllactic-co-lactic acid) (PcL) built via the cross-convergent method from four dyads of monomers as constituent units. Our proposed method allows scalable synthesis of sequence-defined PcL in a minimal number of coupling steps from reagents in stoichiometric amounts. Digital information can be stored in an aperiodic sequence of PcL, which can be fully retrieved as binary code by mass spectrometry sequencing. The information storage density (bit/Da) of PcL is 50% higher than DNA, and the storage capacity of PcL can also be increased by adjusting the molecular weight (~38???kDa)

    Reprogramming the assembly of unmodified DNA with a small molecule

    Get PDF
    The ability of DNA to store and encode information arises from base pairing of the four-letter nucleobase code to form a double helix. Expanding this DNA ‘alphabet’ by synthetic incorporation of new bases can introduce new functionalities and enable the formation of novel nucleic acid structures. However, reprogramming the self-assembly of existing nucleobases presents an alternative route to expand the structural space and functionality of nucleic acids. Here we report the discovery that a small molecule, cyanuric acid, with three thymine-like faces reprogrammes the assembly of unmodified poly(adenine) (poly(A)) into stable, long and abundant fibres with a unique internal structure. Poly(A) DNA, RNA and peptide nucleic acid all form these assemblies. Our studies are consistent with the association of adenine and cyanuric acid units into a hexameric rosette, which brings together poly(A) triplexes with a subsequent cooperative polymerization. Fundamentally, this study shows that small hydrogen-bonding molecules can be used to induce the assembly of nucleic acids in water, which leads to new structures from inexpensive and readily available materials

    The PHENIX Experiment at RHIC

    Full text link
    The physics emphases of the PHENIX collaboration and the design and current status of the PHENIX detector are discussed. The plan of the collaboration for making the most effective use of the available luminosity in the first years of RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program available at http://www.rhic.bnl.gov/phenix

    Glycan-dependent binding of galectin-1 to neuropilin-1 promotes axonal regeneration after spinal cord injury

    Get PDF
    Following spinal cord injury (SCI), semaphorin 3A (Sema3A) prevents axonal regeneration through binding to the neuropilin-1 (NRP-1)/PlexinA4 receptor complex. Here, we show that galectin-1 (Gal-1), an endogenous glycan-binding protein, selectively bound to the NRP-1/PlexinA4 receptor complex in injured neurons through a glycan-dependent mechanism, interrupts the Sema3A pathway and contributes to axonal regeneration and locomotor recovery after SCI. Although both Gal-1 and its monomeric variant contribute to de-activation of microglia, only high concentrations of wild-type Gal-1 (which co-exists in a monomer-dimer equilibrium) bind to the NRP-1/PlexinA4 receptor complex and promote axonal regeneration. Our results show that Gal-1, mainly in its dimeric form, promotes functional recovery of spinal lesions by interfering with inhibitory signals triggered by Sema3A binding to NRP-1/PlexinA4 complex, supporting the use of this lectin for the treatment of SCI patients.Fil: Quintá, Héctor Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Fisicoquímica Biológicas; ArgentinaFil: Pasquini, Juana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Fisicoquímica Biológicas; ArgentinaFil: Rabinovich, Gabriel Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Pasquini, Laura Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Fisicoquímica Biológicas; Argentin

    Planck pre-launch status : The Planck mission

    Get PDF
    Peer reviewe

    Human neuroepithelial stem cell regional specificity enables spinal cord repair through a relay circuit

    Get PDF
    Traumatic spinal cord injury results in persistent disability due to disconnection of surviving neural elements. Neural stem cell transplantation has been proposed as a therapeutic option, but optimal cell type and mechanistic aspects remain poorly defined. Here, we describe robust engraftment into lesioned immunodeficient mice of human neuroepithelial stem cells derived from the developing spinal cord and maintained in self-renewing adherent conditions for long periods. Extensive elongation of both graft and host axons occurs. Improved functional recovery after transplantation depends on neural relay function through the grafted neurons, requires the matching of neural identity to the anatomical site of injury, and is accompanied by expression of specific marker proteins. Thus, human neuroepithelial stem cells may provide an anatomically specific relay function for spinal cord injury recovery
    corecore