57 research outputs found
Development of the lateral ventricular choroid plexus in a marsupial, Monodelphis domestica
<p>Abstract</p> <p>Background</p> <p>Choroid plexus epithelial cells are the site of blood/cerebrospinal fluid (CSF) barrier and regulate molecular transfer between the two compartments. Their mitotic activity in the adult is low. During development, the pattern of growth and timing of acquisition of functional properties of plexus epithelium are not known.</p> <p>Methods</p> <p>Numbers and size of choroid plexus epithelial cells and their nuclei were counted and measured in the lateral ventricular plexus from the first day of its appearance until adulthood. Newborn <it>Monodelphis </it>pups were injected with 5-bromo-2-deoxyuridine (BrdU) at postnatal day 3 (P3), P4 and P5. Additional animals were injected at P63, P64 and P65. BrdU-immunopositive nuclei were counted and their position mapped in the plexus structure at different ages after injections. Double-labelling immunocytochemistry with antibodies to plasma protein identified post-mitotic cells involved in protein transfer.</p> <p>Results</p> <p>Numbers of choroid plexus epithelial cells increased 10-fold between the time of birth and adulthood. In newborn pups each consecutive injection of BrdU labelled 20-40 of epithelial cells counted. After 3 injections, numbers of BrdU positive cells remained constant for at least 2 months. BrdU injections at an older age (P63, P64, P65) resulted in a smaller number of labelled plexus cells. Numbers of plexus cells immunopositive for both BrdU and plasma protein increased with age indicating that protein transferring properties are acquired post mitotically. Labelled nuclei were only detected on the dorsal arm of the plexus as it grows from the neuroependyma, moving along the structure in a 'conveyor belt' like fashion.</p> <p>Conclusions</p> <p>The present study established that lateral ventricular choroid plexus epithelial cells are born on the dorsal side of the structure only. Cells born in the first few days after choroid plexus differentiation from the neuroependyma remain present even two months later. Protein-transferring properties are acquired post-mitotically and relatively early in plexus development.</p
An in vivo screen identifies ependymoma oncogenes and tumor-suppressor genes
Cancers are characterized by non-random chromosome copy number alterations that presumably contain oncogenes and tumor-suppressor genes (TSGs). The affected loci are often large, making it difficult to pinpoint which genes are driving the cancer. Here we report a cross-species in vivo screen of 84 candidate oncogenes and 39 candidate TSGs, located within 28 recurrent chromosomal alterations in ependymoma. Through a series of mouse models, we validate eight new ependymoma oncogenes and ten new ependymoma TSGs that converge on a small number of cell functions, including vesicle trafficking, DNA modification and cholesterol biosynthesis, identifying these as potential new therapeutic targets.We are grateful to F.B. Gertler (Massachusetts Institute of Technology) and S. Gupton (University of North Carolina) for the generous gift of the VAMP7-phlorin construct and the staffs of the Hartwell Center for Bioinformatics and Biotechnology, the Small Animal Imaging Center, the Animal Resources Center, the Cell and Tissue Imaging Center, and the Flow Cytometry and Cell Sorting Shared Resource at St. Jude Children's Research Hospital for technical assistance. This work was supported by grants from the US National Institutes of Health (R01CA129541, P01CA96832 and P30CA021765, R.J.G.), by the Collaborative Ependymoma Research Network (CERN) and by the American Lebanese Syrian Associated Charities (ALSAC)
Widespread Contribution of Gdf7 Lineage to Cerebellar Cell Types and Implications for Hedgehog-Driven Medulloblastoma Formation
The roof plate is a specialized embryonic midline tissue of the central nervous system that functions as a signaling center regulating dorsal neural patterning. In the developing hindbrain, roof plate cells express Gdf7 and previous genetic fate mapping studies showed that these cells contribute mostly to non-neural choroid plexus epithelium. We demonstrate here that constitutive activation of the Sonic hedgehog signaling pathway in the Gdf7 lineage invariably leads to medulloblastoma. Lineage tracing analysis reveals that Gdf7-lineage cells not only are a source of choroid plexus epithelial cells, but are also present in the cerebellar rhombic lip and contribute to a subset of cerebellar granule neuron precursors, the presumed cell-of-origin for Sonic hedgehog-driven medulloblastoma. We further show that Gdf7-lineage cells also contribute to multiple neuronal and glial cell types in the cerebellum, including glutamatergic granule neurons, unipolar brush cells, Purkinje neurons, GABAergic interneurons, Bergmann glial cells, and white matter astrocytes. These findings establish hindbrain roof plate as a novel source of diverse neural cell types in the cerebellum that is also susceptible to oncogenic transformation by deregulated Sonic hedgehog signaling
Endoskopische, tracheobronchialsekretzytologische und arterielle Blutgasuntersuchungen bei bronchopneumoniekranken Rindern
SIGLEAvailable from: Zentralstelle fuer Agrardokumentation und -information (ZADI), Villichgasse 17, D-53177 Bonn / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman
Evaluation of the HVAC System of Passenger Cars and Prediction of the Microclimate in the Passenger Compartment by Application of Numerical Flow Analysis
SEGL: A Problem Solving Environment for the Design and Execution of Complex Scientific Grid Applications
- …
