1,347 research outputs found

    Turbulent heat transfer in spacer-filled channels: Experimental and computational study and selection of turbulence models

    Get PDF
    Heat transfer in spacer-filled channels of the kind used in Membrane Distillation was studied in the Reynolds number range 100–2000, encompassing both steady laminar and early-turbulent flow conditions. Experimental data, including distributions of the local heat transfer coefficient h, were obtained by Liquid Crystal Thermography and Digital Image Processing. Alternative turbulence models, both of first order (k-ε, RNG k-ε, k-ω, BSL k-ω, SST k-ω) and of second order (LRR RS, SSG RS, ω RS, BSL RS), were tested for their ability to predict measured distributions and mean values of h. The best agreement with the experimental results was provided by first-order ω-based models able to resolve the viscous/conductive sublayer, while all other models, and particularly ε-based models using wall functions, yielded disappointing predictions

    Ultracold fermions in a one-dimensional bipartite optical lattice: metal-insulator transitions driven by shaking

    Full text link
    We describe the behavior of a system of fermionic atoms loaded in a bipartite one-dimensional optical lattice that is under the action of an external time-periodic driving force. By using Floquet theory, an effective model with renormalized hopping coefficients is derived. The insulating behavior characterizing the system at half-filling in the absence of driving is dynamically suppressed and for particular values of the driving parameter the system becomes either a standard metal or an unconventional metal with four Fermi points. We use the bosonization technique to investigate the effect of on-site Hubbard interactions on the four Fermi-point metal-insulator phase transition. Attractive interactions are expected to enlarge the regime of parameters where the unconventional metallic phase arises, whereas repulsive interactions reduce it. This metallic phase is known to be a Luther-Emery liquid (spin gapped metal) for both, repulsive and attractive interactions, contrarily to the usual Hubbard model which exhibits a Mott insulator phase for repulsive interactions. Ultracold fermions in driven one-dimensional bipartite optical lattices provide an interesting platform for the realization of this long studied four Fermi-point unconventional metal.Comment: 11 pages, 6 figure

    Particle-hole character of the Higgs and Goldstone modes in strongly-interacting lattice bosons

    Full text link
    We study the low-energy excitations of the Bose-Hubbard model in the strongly-interacting superfluid phase using a Gutzwiller approach and extract the single-particle and single-hole excitation amplitudes for each mode. We report emergent mode-dependent particle-hole symmetry on specific arc-shaped lines in the phase diagram connecting the well-known Lorentz-invariant limits of the Bose-Hubbard model. By tracking the in-phase particle-hole symmetric oscillations of the order parameter, we provide an answer to the long-standing question about the fate of the pure amplitude Higgs mode away from the integer-density critical point. Furthermore, we point out that out-of-phase oscillations are responsible for a full suppression of the condensate density oscillations of the gapless Goldstone mode. Possible detection protocols are also discussed.Comment: 6 pages, 3 figure

    Quantum simulation of correlated-hopping models with fermions in optical lattices

    Full text link
    By using a modulated magnetic field in a Feshbach resonance for ultracold fermionic atoms in optical lattices, we show that it is possible to engineer a class of models usually referred to as correlated-hopping models. These models differ from the Hubbard model in exhibiting additional density-dependent interaction terms that affect the hopping processes. In addition to the spin-SU(2) symmetry, they also possess a charge-SU(2) symmetry, which opens the possibility of investigating the η\eta-pairing mechanism for superconductivity introduced by Yang for the Hubbard model. We discuss the known solution of the model in 1D (where η\eta states have been found in the degenerate manifold of the ground state) and show that, away from the integrable point, quantum Monte Carlo simulations at half filling predict the emergence of a phase with coexisting incommensurate spin and charge order.Comment: 10 pages, 9 figure

    Optimization of net power density in Reverse Electrodialysis

    Get PDF
    Reverse Electrodialysis (RED) extracts electrical energy from the salinity difference between two solutions using selective ion exchange membranes. In RED, conditions yielding a large net power density (NPD) are generally desired, due to the still large cost of the membranes. NPD depends on a large number of physical and geometric parameters. Some of these, for example the inlet concentrations of concentrate and diluate, can be regarded as “scenario” variables, imposed by external constraints (e.g., availability) or chosen by different criteria than NPD maximization. Others, namely the thicknesses HCONC, HDIL and the velocities UCONC, UDIL in the concentrate and diluate channels, can be regarded as free design parameters and can be chosen so as to maximize NPD. In the present study, a simplified model of a RED stack was coupled with an optimization algorithm in order to determine the conditions of maximum NPD in the space of the variables HCONC, HDIL,UCONC, UDIL for different sets of “scenario” variables. The study shows that an optimal choice of the free design parameters for any given scenario, as opposed to the adoption of standard fixed values for the same parameters, may provide significant improvements in NPD

    Density-dependent hopping for ultracold atoms immersed in a Bose-Einstein-condensate vortex lattice

    Full text link
    Both mixtures of atomic Bose-Einstein condensates and systems with atoms trapped in optical lattices have been intensely explored theoretically, mainly due to the exceptional developments on the experimental side. We investigate the properties of ultracold atomic impurities (bosons) immersed in a vortex lattice of a second Bose-condensed species. In contrast to the static optical-lattice configuration, the vortex lattice presents intrinsic dynamics given by its Tkachenko modes. These excitations induce additional correlations between the impurities, which consist in a long-range attractive potential and in a density-dependent hopping, described here in the framework of an extended Bose-Hubbard model. We compute the quantum phase diagram of the impurity species through a Gutzwiller ansatz and through the mean-field approach, and separately identify the effects of the two additional terms, i.e., the shift and the deformation of the Mott insulator lobes. The long-range attraction, in particular, induces the existence of a triple point in the phase diagram, in agreement with previous quantum Monte Carlo calculations [Chaviguri \emph{et al.}, Phys. Rev. A \textbf{95}, 053639 (2017)].Comment: 8 pages, 4 figure

    Two-body bound and edge states in the extended SSH Bose-Hubbard model

    Full text link
    We study the bosonic two-body problem in a Su-Schrieffer-Heeger dimerized chain with on-site and nearest-neighbor interactions. We find two classes of bound states. The first, similar to the one induced by on-site interactions, has its center of mass on the strong link, whereas the second, existing only thanks to nearest-neighbors interactions, is centered on the weak link. We identify energy crossings between these states and analyse them using exact diagonalization and perturbation theory. In the presence of open boundary conditions, novel strongly-localized edge-bound states appear in the spectrum as a consequence of the interplay between lattice geometry, on-site and nearest-neighbor interactions. Contrary to the case of purely on-site interactions, such EBS persist even in the strongly interacting regime.Comment: 12 pages, 8 figures; Submitted to EPJ Special Topics, Quantum Gases and Quantum Coherenc

    The RAMNI airborne lidar for cloud and aerosol research

    Get PDF
    We describe an airborne lidar for the characterization of atmospheric aerosol. The system has been set up in response to the need to monitor extended regions where the air traffic may be posed at risk by the presence of potentially harmful volcanic ash, and to study the characteristics of volcanic emissions both near the source region and when transported over large distances. The lidar provides backscatter and linear depolarization profiles at 532 nm, from which aerosol and cloud properties can be derived. The paper presents the characteristics and capabilities of the lidar system and gives examples of its airborne deployment. Observations from three flights, aimed at assessing the system capabilities in unperturbed atmospheric conditions, and at characterizing the emissions near a volcanic ash source (Mt. Etna) and transported far away from the source, are presented and discussed

    Finite-momentum Bose-Einstein condensates in shaken 2D square optical lattices

    Full text link
    We consider ultracold bosons in a 2D square optical lattice described by the Bose-Hubbard model. In addition, an external time-dependent sinusoidal force is applied to the system, which shakes the lattice along one of the diagonals. The effect of the shaking is to renormalize the nearest-neighbor hopping coefficients, which can be arbitrarily reduced, can vanish, or can even change sign, depending on the shaking parameter. It is therefore necessary to account for higher-order hopping terms, which are renormalized differently by the shaking, and introduce anisotropy into the problem. We show that the competition between these different hopping terms leads to finite-momentum condensates, with a momentum that may be tuned via the strength of the shaking. We calculate the boundaries between the Mott-insulator and the different superfluid phases, and present the time-of-flight images expected to be observed experimentally. Our results open up new possibilities for the realization of bosonic analogs of the FFLO phase describing inhomogeneous superconductivity.Comment: 7 pages, 7 figure
    corecore