1,347 research outputs found
Turbulent heat transfer in spacer-filled channels: Experimental and computational study and selection of turbulence models
Heat transfer in spacer-filled channels of the kind used in Membrane Distillation was studied in the Reynolds number range 100–2000, encompassing both steady laminar and early-turbulent flow conditions. Experimental data, including distributions of the local heat transfer coefficient h, were obtained by Liquid Crystal Thermography and Digital Image Processing. Alternative turbulence models, both of first order (k-ε, RNG k-ε, k-ω, BSL k-ω, SST k-ω) and of second order (LRR RS, SSG RS, ω RS, BSL RS), were tested for their ability to predict measured distributions and mean values of h. The best agreement with the experimental results was provided by first-order ω-based models able to resolve the viscous/conductive sublayer, while all other models, and particularly ε-based models using wall functions, yielded disappointing predictions
Ultracold fermions in a one-dimensional bipartite optical lattice: metal-insulator transitions driven by shaking
We describe the behavior of a system of fermionic atoms loaded in a bipartite
one-dimensional optical lattice that is under the action of an external
time-periodic driving force. By using Floquet theory, an effective model with
renormalized hopping coefficients is derived. The insulating behavior
characterizing the system at half-filling in the absence of driving is
dynamically suppressed and for particular values of the driving parameter the
system becomes either a standard metal or an unconventional metal with four
Fermi points. We use the bosonization technique to investigate the effect of
on-site Hubbard interactions on the four Fermi-point metal-insulator phase
transition. Attractive interactions are expected to enlarge the regime of
parameters where the unconventional metallic phase arises, whereas repulsive
interactions reduce it. This metallic phase is known to be a Luther-Emery
liquid (spin gapped metal) for both, repulsive and attractive interactions,
contrarily to the usual Hubbard model which exhibits a Mott insulator phase for
repulsive interactions. Ultracold fermions in driven one-dimensional bipartite
optical lattices provide an interesting platform for the realization of this
long studied four Fermi-point unconventional metal.Comment: 11 pages, 6 figure
Particle-hole character of the Higgs and Goldstone modes in strongly-interacting lattice bosons
We study the low-energy excitations of the Bose-Hubbard model in the
strongly-interacting superfluid phase using a Gutzwiller approach and extract
the single-particle and single-hole excitation amplitudes for each mode. We
report emergent mode-dependent particle-hole symmetry on specific arc-shaped
lines in the phase diagram connecting the well-known Lorentz-invariant limits
of the Bose-Hubbard model. By tracking the in-phase particle-hole symmetric
oscillations of the order parameter, we provide an answer to the long-standing
question about the fate of the pure amplitude Higgs mode away from the
integer-density critical point. Furthermore, we point out that out-of-phase
oscillations are responsible for a full suppression of the condensate density
oscillations of the gapless Goldstone mode. Possible detection protocols are
also discussed.Comment: 6 pages, 3 figure
Quantum simulation of correlated-hopping models with fermions in optical lattices
By using a modulated magnetic field in a Feshbach resonance for ultracold
fermionic atoms in optical lattices, we show that it is possible to engineer a
class of models usually referred to as correlated-hopping models. These models
differ from the Hubbard model in exhibiting additional density-dependent
interaction terms that affect the hopping processes. In addition to the
spin-SU(2) symmetry, they also possess a charge-SU(2) symmetry, which opens the
possibility of investigating the -pairing mechanism for superconductivity
introduced by Yang for the Hubbard model. We discuss the known solution of the
model in 1D (where states have been found in the degenerate manifold of
the ground state) and show that, away from the integrable point, quantum Monte
Carlo simulations at half filling predict the emergence of a phase with
coexisting incommensurate spin and charge order.Comment: 10 pages, 9 figure
Optimization of net power density in Reverse Electrodialysis
Reverse Electrodialysis (RED) extracts electrical energy from the salinity difference between two solutions using selective ion exchange membranes. In RED, conditions yielding a large net power density (NPD) are generally desired, due to the still large cost of the membranes. NPD depends on a large number of physical and geometric parameters. Some of these, for example the inlet concentrations of concentrate and diluate, can be regarded as “scenario” variables, imposed by external constraints (e.g., availability) or chosen by different criteria than NPD maximization. Others, namely the thicknesses HCONC, HDIL and the velocities UCONC, UDIL in the concentrate and diluate channels, can be regarded as free design parameters and can be chosen so as to maximize NPD. In the present study, a simplified model of a RED stack was coupled with an optimization algorithm in order to determine the conditions of maximum NPD in the space of the variables HCONC, HDIL,UCONC, UDIL for different sets of “scenario” variables. The study shows that an optimal choice of the free design parameters for any given scenario, as opposed to the adoption of standard fixed values for the same parameters, may provide significant improvements in NPD
Density-dependent hopping for ultracold atoms immersed in a Bose-Einstein-condensate vortex lattice
Both mixtures of atomic Bose-Einstein condensates and systems with atoms
trapped in optical lattices have been intensely explored theoretically, mainly
due to the exceptional developments on the experimental side. We investigate
the properties of ultracold atomic impurities (bosons) immersed in a vortex
lattice of a second Bose-condensed species. In contrast to the static
optical-lattice configuration, the vortex lattice presents intrinsic dynamics
given by its Tkachenko modes. These excitations induce additional correlations
between the impurities, which consist in a long-range attractive potential and
in a density-dependent hopping, described here in the framework of an extended
Bose-Hubbard model. We compute the quantum phase diagram of the impurity
species through a Gutzwiller ansatz and through the mean-field approach, and
separately identify the effects of the two additional terms, i.e., the shift
and the deformation of the Mott insulator lobes. The long-range attraction, in
particular, induces the existence of a triple point in the phase diagram, in
agreement with previous quantum Monte Carlo calculations [Chaviguri \emph{et
al.}, Phys. Rev. A \textbf{95}, 053639 (2017)].Comment: 8 pages, 4 figure
Two-body bound and edge states in the extended SSH Bose-Hubbard model
We study the bosonic two-body problem in a Su-Schrieffer-Heeger dimerized
chain with on-site and nearest-neighbor interactions. We find two classes of
bound states. The first, similar to the one induced by on-site interactions,
has its center of mass on the strong link, whereas the second, existing only
thanks to nearest-neighbors interactions, is centered on the weak link. We
identify energy crossings between these states and analyse them using exact
diagonalization and perturbation theory. In the presence of open boundary
conditions, novel strongly-localized edge-bound states appear in the spectrum
as a consequence of the interplay between lattice geometry, on-site and
nearest-neighbor interactions. Contrary to the case of purely on-site
interactions, such EBS persist even in the strongly interacting regime.Comment: 12 pages, 8 figures; Submitted to EPJ Special Topics, Quantum Gases
and Quantum Coherenc
The RAMNI airborne lidar for cloud and aerosol research
We describe an airborne lidar for the characterization of atmospheric aerosol. The system has been set up in response to the need to monitor extended regions where the air traffic may be posed at risk by the presence of potentially harmful volcanic ash, and to study the characteristics of volcanic emissions both near the source region and when transported over large distances. The lidar provides backscatter and linear depolarization profiles at 532 nm, from which aerosol and cloud properties can be derived. The paper presents the characteristics and capabilities of the lidar system and gives examples of its airborne deployment. Observations from three flights, aimed at assessing the system capabilities in unperturbed atmospheric conditions, and at characterizing the emissions near a volcanic ash source (Mt. Etna) and transported far away from the source, are presented and discussed
Finite-momentum Bose-Einstein condensates in shaken 2D square optical lattices
We consider ultracold bosons in a 2D square optical lattice described by the
Bose-Hubbard model. In addition, an external time-dependent sinusoidal force is
applied to the system, which shakes the lattice along one of the diagonals. The
effect of the shaking is to renormalize the nearest-neighbor hopping
coefficients, which can be arbitrarily reduced, can vanish, or can even change
sign, depending on the shaking parameter. It is therefore necessary to account
for higher-order hopping terms, which are renormalized differently by the
shaking, and introduce anisotropy into the problem. We show that the
competition between these different hopping terms leads to finite-momentum
condensates, with a momentum that may be tuned via the strength of the shaking.
We calculate the boundaries between the Mott-insulator and the different
superfluid phases, and present the time-of-flight images expected to be
observed experimentally. Our results open up new possibilities for the
realization of bosonic analogs of the FFLO phase describing inhomogeneous
superconductivity.Comment: 7 pages, 7 figure
- …
