2,939 research outputs found
CAFE: Calar Alto Fiber-fed Echelle spectrograph
We present here CAFE, the Calar Alto Fiber-fed Echelle spectrograph, a new
instrument built at the Centro Astronomico Hispano Alem\'an (CAHA). CAFE is a
single fiber, high-resolution (70000) spectrograph, covering the
wavelength range between 3650-9800\AA. It was built on the basis of the common
design for Echelle spectrographs. Its main aim is to measure radial velocities
of stellar objects up to 13-14 mag with a precision as good as a few
tens of . To achieve this goal the design was simplified at maximum,
removing all possible movable components, the central wavelength is fixed, so
the wavelentgth coverage; no filter wheel, one slit and so on, with a
particular care taken in the thermal and mechanical stability. The instrument
is fully operational and publically accessible at the 2.2m telescope of the
Calar Alto Observatory.
In this article we describe (i) the design, summarizing its manufacturing
phase; (ii) characterize the main properties of the instrument; (iii) describe
the reduction pipeline; and (iv) show the results from the first light and
commissioning runs. The preliminar results indicate that the instrument fulfill
the specifications and it can achieve the foreseen goals. In particular, they
show that the instrument is more efficient than anticipated, reaching a
20 for a stellar object as faint as 14.5 mag in 2700s
integration time. The instrument is a wonderful machine for exoplanetary
research (by studying large samples of possible systems cotaining massive
planets), galactic dynamics (high precise radial velocities in moving groups or
stellar associations) or astrochemistry.Comment: 12 pages, 23 figures; Acepted for publishing in A&A, 201
CR TKA UHMWPE Wear Tested after Artificial Aging of the Vitamin E Treated Gliding Component by Simulating Daily Patient Activities
The wear behaviour of total knee arthroplasty (TKA) is dominated by two wear
mechanisms: the abrasive wear and the delamination of the gliding components,
where the second is strongly linked to aging processes and stress
concentration in the material. The addition of vitamin E to the bulk material
is a potential way to reduce the aging processes. This study evaluates the
wear behaviour and delamination susceptibility of the gliding components of a
vitamin E blended, ultra-high molecular weight polyethylene (UHMWPE) cruciate
retaining (CR) total knee arthroplasty. Daily activities such as level
walking, ascending and descending stairs, bending of the knee, and sitting and
rising from a chair were simulated with a data set received from an
instrumented knee prosthesis. After 5 million test cycles no structural
failure of the gliding components was observed. The wear rate was with
mg/million cycles falling within the limit of previous reports for established
wear test methods
Optical properties of tungsten thin films perforated with a bidimensional array of subwavelength holes
We present a theorical investigation of the optical transmission of a
dielectric grating carved in a tungsten layer. For appropriate wavelengths
tungsten shows indeed a dielectric behaviour. Our numerical simulations leads
to theoretical results similar to those found with metallic systems studied in
earlier works. The interpretation of our results rests on the idea that the
transmission is correlated with the resonant response of eigenmodes coupled to
evanescent diffraction orders.Comment: 4 pages, 3 figure
Observation of enhanced transmission for s-polarized light through a subwavelength slit
Enhanced optical transmission (EOT) through subwavelength apertures is
usually obtained for p-polarized light. The present study experimentally
investigates EOT for s-polarized light. A subwavelength slit surrounded on each
side by periodic grooves has been fabricated in a gold film and covered by a
thin dielectric layer. The excitation of s-polarized dielectric waveguide modes
inside the dielectric film strongly increases the s-polarized transmission.
Transmission measurements are compared with a coupled mode model and show good
qualitative agreement. Adding a waveguide can improve light transmission
through subwavelength apertures, as both s and p-polarization can be
efficiently transmitted.Comment: 11 pages, 3 figures, submitted to Applied Physics Letter
uFLIP-OC: Understanding Flash I/O Patterns on Open-Channel Solid State Drives
International audienceSolid-State Drives (SSDs) have gained acceptance by providing the same block device abstraction as magnetic hard drives, at the cost of suboptimal resource utilisation and unpredictable performance. Recently, Open-Channel SSDs have emerged as a means to obtain predictably high performance, based on a clean break from the block device abstraction. Open-channel SSDs embed a minimal flash translation layer (FTL) and expose their internals to the host. The Linux open-channel SSD subsystem, LightNVM, lets kernel modules as well as user-space applications control data placement and I/O scheduling. This way, it is the host that is responsible for SSD management. But what kind of performance model should the host rely on to guide the way it manages data placement and I/O scheduling? For addressing this question we have defined uFLIP-OC, a benchmark designed to identify the I/O patterns that are best suited for a given open-channel SSD. Our experiments on a Dragon-Fire Card (DFC) SSD, equipped with the OX controller, illustrate the performance impact of media characteristics and parallelism. We discuss how uFLIP-OC can be used to guide the design of host-based data systems on open-channel SSDs
Collective Feshbach scattering of a superfluid droplet from a mesoscopic two-component Bose-Einstein condensate
We examine the collective scattering of a superfluid droplet impinging on a
mesoscopic Bose-Einstein condensate (BEC) as a target. The BEC consists of an
atomic gas with two internal electronic states, each of which is trapped by a
finite-depth external potential. An off-resonant optical laser field provides a
localized coupling between the BEC components in the trapping region. This
mesoscopic scenario matches the microscopic setup for Feshbach scattering of
two particles, when a bound state of one sub-manifold is embedded in the
scattering continuum of the other sub-manifold. Within the mean-field picture,
we obtain resonant scattering phase shifts from a linear response theory in
agreement with an exact numerical solution of the real time scattering process
and simple analytical approximations thereof. We find an energy-dependent
transmission coefficient that is controllable via the optical field between 0
and 100%.Comment: 4 Latex pages, including 4 figure
Individual charge traps in silicon nanowires: Measurements of location, spin and occupation number by Coulomb blockade spectroscopy
We study anomalies in the Coulomb blockade spectrum of a quantum dot formed
in a silicon nanowire. These anomalies are attributed to electrostatic
interaction with charge traps in the device. A simple model reproduces these
anomalies accurately and we show how the capacitance matrices of the traps can
be obtained from the shape of the anomalies. From these capacitance matrices we
deduce that the traps are located near or inside the wire. Based on the
occurrence of the anomalies in wires with different doping levels we infer that
most of the traps are arsenic dopant states. In some cases the anomalies are
accompanied by a random telegraph signal which allows time resolved monitoring
of the occupation of the trap. The spin of the trap states is determined via
the Zeeman shift.Comment: 9 pages, 8 figures, v2: section on RTS measurements added, many
improvement
Systematic NLTE study of the -2.6 < [Fe/H] < 0.2 F and G dwarfs in the solar neighbourhood. I. Stellar atmosphere parameters
We present atmospheric parameters for 51 nearby FG dwarfs uniformly
distributed over the -2.60 < [Fe/H] < +0.20 metallicity range that is suitable
for the Galactic chemical evolution research. Lines of iron, Fe I and Fe II,
were used to derive a homogeneous set of effective temperatures, surface
gravities, iron abundances, and microturbulence velocities. We used
high-resolution (R>60000) Shane/Hamilton and CFHT/ESPaDOnS observed spectra and
non-local thermodynamic equilibrium (NLTE) line formation for Fe I and Fe II in
the classical 1D model atmospheres. The spectroscopic method was tested with
the 20 benchmark stars, for which there are multiple measurements of the
infrared flux method (IRFM) Teff and their Hipparcos parallax error is < 10%.
We found NLTE abundances from lines of Fe I and Fe II to be consistent within
0.06 dex for every benchmark star, when applying a scaling factor of S_H = 0.5
to the Drawinian rates of inelastic Fe+H collisions. The obtained atmospheric
parameters were checked for each program star by comparing its position in the
log g-Teff plane with the theoretical evolutionary track in the Yi et al.
(2004) grid. Our final effective temperatures lie in between the T_IRFM scales
of Alonso et al. (1996) and Casagrande et al. (2011), with a mean difference of
+46 K and -51 K, respectively. NLTE leads to higher surface gravity compared
with that for LTE. The shift in log g is smaller than 0.1 dex for stars with
either [Fe/H] > -0.75, or Teff 4.20. NLTE analysis is
crucial for the VMP turn-off and subgiant stars, for which the shift in log g
between NLTE and LTE can be up to 0.5 dex. The obtained atmospheric parameters
will be used in the forthcoming papers to determine NLTE abundances of
important astrophysical elements from lithium to europium and to improve
observational constraints on the chemo-dynamical models of the Galaxy
evolution.Comment: 18 pages, 14 figures, accepted for publication in Ap
Sirolimus (SRL)-Based GVHD Prophylaxis After Allogeneic HSCT in Pediatric All Patients: Low NRM, Low Incidence of VOD, and Higher Than Expected EFS: Results of a Multi-Institutional Pilot Study
Theory of extraordinary optical transmission through subwavelength hole arrays
We present a fully three-dimensional theoretical study of the extraordinary
transmission of light through subwavelength hole arrays in optically thick
metal films. Good agreement is obtained with experimental data. An analytical
minimal model is also developed, which conclusively shows that the enhancement
of transmission is due to tunneling through surface plasmons formed on each
metal-dielectric interfaces. Different regimes of tunneling (resonant through a
''surface plasmon molecule", or sequential through two isolated surface
plasmons) are found depending on the geometrical parameters defining the
system.Comment: 4 pages, 4 figure
- …
