464 research outputs found
Survey strategy optimization for the Atacama Cosmology Telescope
In recent years there have been significant improvements in the sensitivity
and the angular resolution of the instruments dedicated to the observation of
the Cosmic Microwave Background (CMB). ACTPol is the first polarization
receiver for the Atacama Cosmology Telescope (ACT) and is observing the CMB sky
with arcmin resolution over about 2000 sq. deg. Its upgrade, Advanced ACTPol
(AdvACT), will observe the CMB in five frequency bands and over a larger area
of the sky. We describe the optimization and implementation of the ACTPol and
AdvACT surveys. The selection of the observed fields is driven mainly by the
science goals, that is, small angular scale CMB measurements, B-mode
measurements and cross-correlation studies. For the ACTPol survey we have
observed patches of the southern galactic sky with low galactic foreground
emissions which were also chosen to maximize the overlap with several galaxy
surveys to allow unique cross-correlation studies. A wider field in the
northern galactic cap ensured significant additional overlap with the BOSS
spectroscopic survey. The exact shapes and footprints of the fields were
optimized to achieve uniform coverage and to obtain cross-linked maps by
observing the fields with different scan directions. We have maximized the
efficiency of the survey by implementing a close to 24 hour observing strategy,
switching between daytime and nighttime observing plans and minimizing the
telescope idle time. We describe the challenges represented by the survey
optimization for the significantly wider area observed by AdvACT, which will
observe roughly half of the low-foreground sky. The survey strategies described
here may prove useful for planning future ground-based CMB surveys, such as the
Simons Observatory and CMB Stage IV surveys.Comment: 14 Pages, 9 Figures, 4 Table
The Atacama Cosmology Telescope: Physical Properties of Sunyaev-Zel'dovich Effect Clusters on the Celestial Equator
We present the optical and X-ray properties of 68 galaxy clusters selected
via the Sunyaev-Zel'dovich Effect at 148 GHz by the Atacama Cosmology Telescope
(ACT). Our sample, from an area of 504 square degrees centered on the celestial
equator, is divided into two regions. The main region uses 270 square degrees
of the ACT survey that overlaps with the co-added ugriz imaging from the Sloan
Digital Sky Survey (SDSS) over Stripe 82 plus additional near-infrared pointed
observations with the Apache Point Observatory 3.5-meter telescope. We confirm
a total of 49 clusters to z~1.3, of which 22 (all at z>0.55) are new
discoveries. For the second region the regular-depth SDSS imaging allows us to
confirm 19 more clusters up to z~0.7, of which 10 systems are new. We present
the optical richness, photometric redshifts, and separation between the SZ
position and the brightest cluster galaxy (BCG). We find no significant offset
between the cluster SZ centroid and BCG location and a weak correlation between
optical richness and SZ-derived mass. We also present X-ray fluxes and
luminosities from the ROSAT All Sky Survey which confirm that this is a massive
sample. One of the newly discovered clusters, ACT-CL J0044.4+0113 at z=1.1
(photometric), has an integrated XMM-Newton X-ray temperature of kT_x=7.9+/-1.0
keV and combined mass of M_200a=8.2(-2.5,+3.3)x10^14 M_sun/h70 placing it among
the most massive and X-ray-hot clusters known at redshifts beyond z=1. We also
highlight the optically-rich cluster ACT-CL J2327.4-0204 (RCS2 2327) at z=0.705
(spectroscopic) as the most significant detection of the whole equatorial
sample with a Chandra-derived mass of M_200a=1.9(-0.4,+0.6)x10^15 M_sun/h70,
comparable to some of the most massive known clusters like "El Gordo" and the
Bullet Cluster.Comment: 18 pages, 12 figures. Accepted to the Astrophysical Journal. New
version includes minor changes in the accepted pape
The Thermal Design, Characterization, and Performance of the SPIDER Long-Duration Balloon Cryostat
We describe the SPIDER flight cryostat, which is designed to cool six
millimeter-wavelength telescopes during an Antarctic long-duration balloon
flight. The cryostat, one of the largest to have flown on a stratospheric
payload, uses liquid helium-4 to deliver cooling power to stages at 4.2 and 1.6
K. Stainless steel capillaries facilitate a high flow impedance connection
between the main liquid helium tank and a smaller superfluid tank, allowing the
latter to operate at 1.6 K as long as there is liquid in the 4.2 K main tank.
Each telescope houses a closed cycle helium-3 adsorption refrigerator that
further cools the focal planes down to 300 mK. Liquid helium vapor from the
main tank is routed through heat exchangers that cool radiation shields,
providing negative thermal feedback. The system performed successfully during a
17 day flight in the 2014-2015 Antarctic summer. The cryostat had a total hold
time of 16.8 days, with 15.9 days occurring during flight.Comment: 15 pgs, 17 fig
The Atacama Cosmology Telescope: The polarization-sensitive ACTPol instrument
The Atacama Cosmology Telescope (ACT) is designed to make high angular
resolution measurements of anisotropies in the Cosmic Microwave Background
(CMB) at millimeter wavelengths. We describe ACTPol, an upgraded receiver for
ACT, which uses feedhorn-coupled, polarization-sensitive detector arrays, a 3
degree field of view, 100 mK cryogenics with continuous cooling, and meta
material anti-reflection coatings. ACTPol comprises three arrays with separate
cryogenic optics: two arrays at a central frequency of 148 GHz and one array
operating simultaneously at both 97 GHz and 148 GHz. The combined instrument
sensitivity, angular resolution, and sky coverage are optimized for measuring
angular power spectra, clusters via the thermal Sunyaev-Zel'dovich and kinetic
Sunyaev-Zel'dovich signals, and CMB lensing due to large scale structure. The
receiver was commissioned with its first 148 GHz array in 2013, observed with
both 148 GHz arrays in 2014, and has recently completed its first full season
of operations with the full suite of three arrays. This paper provides an
overview of the design and initial performance of the receiver and related
systems
Optical modeling and polarization calibration for CMB measurements with ACTPol and Advanced ACTPol
The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization
sensitive upgrade to the Atacama Cosmology Telescope. Located at an elevation
of 5190 m, ACTPol measures the Cosmic Microwave Background (CMB) temperature
and polarization with arcminute-scale angular resolution. Calibration of the
detector angles is a critical step in producing maps of the CMB polarization.
Polarization angle offsets in the detector calibration can cause leakage in
polarization from E to B modes and induce a spurious signal in the EB and TB
cross correlations, which eliminates our ability to measure potential
cosmological sources of EB and TB signals, such as cosmic birefringence. We
present our optical modeling and measurements associated with calibrating the
detector angles in ACTPol.Comment: 12 pages, 8 figures, conference proceedings submitted to Proceedings
of SPIE; added reference in section 2 and merged repeated referenc
Critical Boundary Sine-Gordon Revisited
We revisit the exact solution of the two space-time dimensional quantum field
theory of a free massless boson with a periodic boundary interaction and
self-dual period. We analyze the model by using a mapping to free fermions with
a boundary mass term originally suggested in ref.[22]. We find that the entire
SL(2,C) family of boundary states of a single boson are boundary sine-Gordon
states and we derive a simple explicit expression for the boundary state in
fermion variables and as a function of sine-Gordon coupling constants. We use
this expression to compute the partition function. We observe that the solution
of the model has a strong-weak coupling generalization of T-duality. We then
examine a class of recently discovered conformal boundary states for compact
bosons with radii which are rational numbers times the self-dual radius. These
have simple expression in fermion variables. We postulate sine-Gordon-like
field theories with discrete gauge symmmetries for which they are the
appropriate boundary states.Comment: 33 pages, 1 figure, references added, typos correcte
Design and construction of a carbon fiber gondola for the SPIDER balloon-borne telescope
We introduce the light-weight carbon fiber and aluminum gondola designed for
the SPIDER balloon-borne telescope. SPIDER is designed to measure the
polarization of the Cosmic Microwave Background radiation with unprecedented
sensitivity and control of systematics in search of the imprint of inflation: a
period of exponential expansion in the early Universe. The requirements of this
balloon-borne instrument put tight constrains on the mass budget of the
payload. The SPIDER gondola is designed to house the experiment and guarantee
its operational and structural integrity during its balloon-borne flight, while
using less than 10% of the total mass of the payload. We present a construction
method for the gondola based on carbon fiber reinforced polymer tubes with
aluminum inserts and aluminum multi-tube joints. We describe the validation of
the model through Finite Element Analysis and mechanical tests.Comment: 16 pages, 11 figures. Presented at SPIE Ground-based and Airborne
Telescopes V, June 23, 2014. To be published in Proceedings of SPIE Volume
914
Detection of the pairwise kinematic Sunyaev-Zel'dovich effect with BOSS DR11 and the Atacama Cosmology Telescope
We present a new measurement of the kinematic Sunyaev-Zeldovich effect using
data from the Atacama Cosmology Telescope (ACT) and the Baryon Oscillation
Spectroscopic Survey (BOSS). Using 600 square degrees of overlapping sky area,
we evaluate the mean pairwise baryon momentum associated with the positions of
50,000 bright galaxies in the BOSS DR11 Large Scale Structure catalog. A
non-zero signal arises from the large-scale motions of halos containing the
sample galaxies. The data fits an analytical signal model well, with the
optical depth to microwave photon scattering as a free parameter determining
the overall signal amplitude. We estimate the covariance matrix of the mean
pairwise momentum as a function of galaxy separation, using microwave sky
simulations, jackknife evaluation, and bootstrap estimates. The most
conservative simulation-based errors give signal-to-noise estimates between 3.6
and 4.1 for varying galaxy luminosity cuts. We discuss how the other error
determinations can lead to higher signal-to-noise values, and consider the
impact of several possible systematic errors. Estimates of the optical depth
from the average thermal Sunyaev-Zeldovich signal at the sample galaxy
positions are broadly consistent with those obtained from the mean pairwise
momentum signal.Comment: 15 pages, 8 figures, 2 table
BICEP2 II: Experiment and Three-Year Data Set
We report on the design and performance of the BICEP2 instrument and on its
three-year data set. BICEP2 was designed to measure the polarization of the
cosmic microwave background (CMB) on angular scales of 1 to 5 degrees
(=40-200), near the expected peak of the B-mode polarization signature of
primordial gravitational waves from cosmic inflation. Measuring B-modes
requires dramatic improvements in sensitivity combined with exquisite control
of systematics. The BICEP2 telescope observed from the South Pole with a 26~cm
aperture and cold, on-axis, refractive optics. BICEP2 also adopted a new
detector design in which beam-defining slot antenna arrays couple to
transition-edge sensor (TES) bolometers, all fabricated on a common substrate.
The antenna-coupled TES detectors supported scalable fabrication and
multiplexed readout that allowed BICEP2 to achieve a high detector count of 500
bolometers at 150 GHz, giving unprecedented sensitivity to B-modes at degree
angular scales. After optimization of detector and readout parameters, BICEP2
achieved an instrument noise-equivalent temperature of 15.8 K sqrt(s). The
full data set reached Stokes Q and U map depths of 87.2 nK in square-degree
pixels (5.2 K arcmin) over an effective area of 384 square degrees within
a 1000 square degree field. These are the deepest CMB polarization maps at
degree angular scales to date. The power spectrum analysis presented in a
companion paper has resulted in a significant detection of B-mode polarization
at degree scales.Comment: 30 pages, 24 figure
- …
