1,654 research outputs found

    A Schmidt number for density matrices

    Get PDF
    We introduce the notion of a Schmidt number of a bipartite density matrix, characterizing the minimum Schmidt rank of the pure states that are needed to construct the density matrix. We prove that Schmidt number is nonincreasing under local quantum operations and classical communication. We show that kk-positive maps witness Schmidt number, in the same way that positive maps witness entanglement. We show that the family of states which is made from mixing the completely mixed state and a maximally entangled state have increasing Schmidt number depending on the amount of maximally entangled state that is mixed in. We show that Schmidt number {\it does not necessarily increase} when taking tensor copies of a density matrix ρ\rho; we give an example of a density matrix for which the Schmidt numbers of ρ\rho and ρρ\rho \otimes \rho are both 2.Comment: 5 pages RevTex, 1 typo in Proof Lemma 1 correcte

    Locking entanglement measures with a single qubit

    Get PDF
    We study the loss of entanglement of bipartite state subjected to discarding or measurement of one qubit. Examining the behavior of different entanglement measures, we find that entanglement of formation, entanglement cost, and logarithmic negativity are lockable measures in that it can decrease arbitrarily after measuring one qubit. We prove that any convex and asymptotically non-continuous measure is lockable. As a consequence, all the convex roof measures can be locked. Relative entropy of entanglement is shown to be a non-lockable measure.Comment: 5 pages, RevTex
    corecore