1,275 research outputs found
The quasi-free-standing nature of graphene on H-saturated SiC(0001)
We report on an investigation of quasi-free-standing graphene on 6H-SiC(0001)
which was prepared by intercalation of hydrogen under the buffer layer. Using
infrared absorption spectroscopy we prove that the SiC(0001) surface is
saturated with hydrogen. Raman spectra demonstrate the conversion of the buffer
layer into graphene which exhibits a slight tensile strain and short range
defects. The layers are hole doped (p = 5.0-6.5 x 10^12 cm^(-2)) with a carrier
mobility of 3,100 cm^2/Vs at room temperature. Compared to graphene on the
buffer layer a strongly reduced temperature dependence of the mobility is
observed for graphene on H-terminated SiC(0001)which justifies the term
"quasi-free-standing".Comment: 3 pages, 3 figures, accepted for publication in Applied Physics
Letter
Moody's Correlated Binomial Default Distributions for Inhomogeneous Portfolios
This paper generalizes Moody's correlated binomial default distribution for
homogeneous (exchangeable) credit portfolio, which is introduced by Witt, to
the case of inhomogeneous portfolios. As inhomogeneous portfolios, we consider
two cases. In the first case, we treat a portfolio whose assets have uniform
default correlation and non-uniform default probabilities. We obtain the
default probability distribution and study the effect of the inhomogeneity on
it. The second case corresponds to a portfolio with inhomogeneous default
correlation. Assets are categorized in several different sectors and the
inter-sector and intra-sector correlations are not the same. We construct the
joint default probabilities and obtain the default probability distribution. We
show that as the number of assets in each sector decreases, inter-sector
correlation becomes more important than intra-sector correlation. We study the
maximum values of the inter-sector default correlation. Our generalization
method can be applied to any correlated binomial default distribution model
which has explicit relations to the conditional default probabilities or
conditional default correlations, e.g. Credit Risk, implied default
distributions. We also compare some popular CDO pricing models from the
viewpoint of the range of the implied tranche correlation.Comment: 29 pages, 17 figures and 1 tabl
Correlation Structures of Correlated Binomial Models and Implied Default Distribution
We show how to analyze and interpret the correlation structures, the
conditional expectation values and correlation coefficients of exchangeable
Bernoulli random variables. We study implied default distributions for the
iTraxx-CJ tranches and some popular probabilistic models, including the
Gaussian copula model, Beta binomial distribution model and long-range Ising
model. We interpret the differences in their profiles in terms of the
correlation structures. The implied default distribution has singular
correlation structures, reflecting the credit market implications. We point out
two possible origins of the singular behavior.Comment: 16 pages, 7 figure
Production of α1,3-galactosyltransferase-deficient pigs
The enzyme α1,3-galactosyltransferase (α1,3GT or GGTA1) synthesizes α1,3galactose (α1,3Gal) epitopes (Galα1,3Galβ1,4GlcNAc-R), which are the major xenoantigens causing hyperacute rejection in pig-to-human xenotransplantation. Complete removal of α1,3Gal from pig organs is the critical step toward the success of xenotransplantation. We reported earlier the targeted disruption of one allele of the α1,3GT gene in cloned pigs. A selection procedure based on a bacteria[toxin was used to select for cells in which the second allele of the gene was knocked out. Sequencing analysis demonstrated that knockout of the second allele of the α1,3GT gene was caused by a T-to-G single point mutation at the second base of exon 9, which resulted in inactivation of the α1,3GT protein. Four healthy α1,3GT double-knockout female piglets were produced by three consecutive rounds of cloning. The piglets carrying a point mutation in the α1,3GT gene hold significant value, as they would allow production of α1,3Gal-deficient pigs free of antibiotic-resistance genes and thus have the potential to make a safer product for human use
Giant Faraday rotation in single- and multilayer graphene
Optical Faraday rotation is one of the most direct and practically important
manifestations of magnetically broken time-reversal symmetry. The rotation
angle is proportional to the distance traveled by the light, and up to now
sizeable effects were observed only in macroscopically thick samples and in
two-dimensional electron gases with effective thicknesses of several
nanometers. Here we demonstrate that a single atomic layer of carbon - graphene
- turns the polarization by several degrees in modest magnetic fields. The
rotation is found to be strongly enhanced by resonances originating from the
cyclotron effect in the classical regime and the inter-Landau-level transitions
in the quantum regime. Combined with the possibility of ambipolar doping, this
opens pathways to use graphene in fast tunable ultrathin infrared
magneto-optical devices
Electrical Stimulation Modulates High γ Activity and Human Memory Performance.
Direct electrical stimulation of the brain has emerged as a powerful treatment for multiple neurological diseases, and as a potential technique to enhance human cognition. Despite its application in a range of brain disorders, it remains unclear how stimulation of discrete brain areas affects memory performance and the underlying electrophysiological activities. Here, we investigated the effect of direct electrical stimulation in four brain regions known to support declarative memory: hippocampus (HP), parahippocampal region (PH) neocortex, prefrontal cortex (PF), and lateral temporal cortex (TC). Intracranial EEG recordings with stimulation were collected from 22 patients during performance of verbal memory tasks. We found that high γ (62-118 Hz) activity induced by word presentation was modulated by electrical stimulation. This modulatory effect was greatest for trials with poor memory encoding. The high γ modulation correlated with the behavioral effect of stimulation in a given brain region: it was negative, i.e., the induced high γ activity was decreased, in the regions where stimulation decreased memory performance, and positive in the lateral TC where memory enhancement was observed. Our results suggest that the effect of electrical stimulation on high γ activity induced by word presentation may be a useful biomarker for mapping memory networks and guiding therapeutic brain stimulation
Toxic Epidermal Necrolysis after Pemetrexed and Cisplatin for Non-Small Cell Lung Cancer in a Patient with Sharp Syndrome
Background: Pemetrexed is an antifolate drug approved for maintenance and second-line therapy, and, in combination with cisplatin, for first-line treatment of advanced nonsquamous non-small cell lung cancer. The side-effect profile includes fatigue, hematological and gastrointestinal toxicity, an increase in hepatic enzymes, sensory neuropathy, and pulmonary and cutaneous toxicity in various degrees. Case Report: We present the case of a 58-year-old woman with history of Sharp's syndrome and adenocarcinoma of the lung, who developed toxic epidermal necrolysis after the first cycle of pemetrexed, including erythema, bullae, extensive skin denudation, subsequent systemic inflammation and severe deterioration in general condition. The generalized skin lesions occurred primarily in the previous radiation field and responded to immunosuppressive treatment with prednisone. Conclusion: Although skin toxicity is a well-known side effect of pemetrexed, severe skin reactions after pemetrexed administration are rare. Caution should be applied in cases in which pemetrexed is given subsequent to radiation therapy, especially in patients with pre-existing skin diseases
Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package
We introduce the \texttt{pyunicorn} (Pythonic unified complex network and
recurrence analysis toolbox) open source software package for applying and
combining modern methods of data analysis and modeling from complex network
theory and nonlinear time series analysis. \texttt{pyunicorn} is a fully
object-oriented and easily parallelizable package written in the language
Python. It allows for the construction of functional networks such as climate
networks in climatology or functional brain networks in neuroscience
representing the structure of statistical interrelationships in large data sets
of time series and, subsequently, investigating this structure using advanced
methods of complex network theory such as measures and models for spatial
networks, networks of interacting networks, node-weighted statistics or network
surrogates. Additionally, \texttt{pyunicorn} provides insights into the
nonlinear dynamics of complex systems as recorded in uni- and multivariate time
series from a non-traditional perspective by means of recurrence quantification
analysis (RQA), recurrence networks, visibility graphs and construction of
surrogate time series. The range of possible applications of the library is
outlined, drawing on several examples mainly from the field of climatology.Comment: 28 pages, 17 figure
Recommended from our members
Human Verbal Memory Encoding Is Hierarchically Distributed in a Continuous Processing Stream.
Processing of memory is supported by coordinated activity in a network of sensory, association, and motor brain regions. It remains a major challenge to determine where memory is encoded for later retrieval. Here, we used direct intracranial brain recordings from epilepsy patients performing free recall tasks to determine the temporal pattern and anatomical distribution of verbal memory encoding across the entire human cortex. High γ frequency activity (65-115 Hz) showed consistent power responses during encoding of subsequently recalled and forgotten words on a subset of electrodes localized in 16 distinct cortical areas activated in the tasks. More of the high γ power during word encoding, and less power before and after the word presentation, was characteristic of successful recall and observed across multiple brain regions. Latencies of the induced power changes and this subsequent memory effect (SME) between the recalled and forgotten words followed an anatomical sequence from visual to prefrontal cortical areas. Finally, the magnitude of the memory effect was unexpectedly found to be the largest in selected brain regions both at the top and at the bottom of the processing stream. These included the language processing areas of the prefrontal cortex and the early visual areas at the junction of the occipital and temporal lobes. Our results provide evidence for distributed encoding of verbal memory organized along a hierarchical posterior-to-anterior processing stream
- …
