378 research outputs found

    Lower bounds for on-line graph colorings

    Full text link
    We propose two strategies for Presenter in on-line graph coloring games. The first one constructs bipartite graphs and forces any on-line coloring algorithm to use 2log2n102\log_2 n - 10 colors, where nn is the number of vertices in the constructed graph. This is best possible up to an additive constant. The second strategy constructs graphs that contain neither C3C_3 nor C5C_5 as a subgraph and forces Ω(nlogn13)\Omega(\frac{n}{\log n}^\frac{1}{3}) colors. The best known on-line coloring algorithm for these graphs uses O(n12)O(n^{\frac{1}{2}}) colors

    First-Fit is Linear on Posets Excluding Two Long Incomparable Chains

    Full text link
    A poset is (r + s)-free if it does not contain two incomparable chains of size r and s, respectively. We prove that when r and s are at least 2, the First-Fit algorithm partitions every (r + s)-free poset P into at most 8(r-1)(s-1)w chains, where w is the width of P. This solves an open problem of Bosek, Krawczyk, and Szczypka (SIAM J. Discrete Math., 23(4):1992--1999, 2010).Comment: v3: fixed some typo

    On graphs with a large chromatic number containing no small odd cycles

    Full text link
    In this paper, we present the lower bounds for the number of vertices in a graph with a large chromatic number containing no small odd cycles

    An Improved Bound for First-Fit on Posets Without Two Long Incomparable Chains

    Full text link
    It is known that the First-Fit algorithm for partitioning a poset P into chains uses relatively few chains when P does not have two incomparable chains each of size k. In particular, if P has width w then Bosek, Krawczyk, and Szczypka (SIAM J. Discrete Math., 23(4):1992--1999, 2010) proved an upper bound of ckw^{2} on the number of chains used by First-Fit for some constant c, while Joret and Milans (Order, 28(3):455--464, 2011) gave one of ck^{2}w. In this paper we prove an upper bound of the form ckw. This is best possible up to the value of c.Comment: v3: referees' comments incorporate

    Microwave Spectroscopy

    Get PDF
    Contains reports on four research projects.Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DA 36-039-AMC-03200(E

    An Improved Upper Bound for the Ring Loading Problem

    Full text link
    The Ring Loading Problem emerged in the 1990s to model an important special case of telecommunication networks (SONET rings) which gained attention from practitioners and theorists alike. Given an undirected cycle on nn nodes together with non-negative demands between any pair of nodes, the Ring Loading Problem asks for an unsplittable routing of the demands such that the maximum cumulated demand on any edge is minimized. Let LL be the value of such a solution. In the relaxed version of the problem, each demand can be split into two parts where the first part is routed clockwise while the second part is routed counter-clockwise. Denote with LL^* the maximum load of a minimum split routing solution. In a landmark paper, Schrijver, Seymour and Winkler [SSW98] showed that LL+1.5DL \leq L^* + 1.5D, where DD is the maximum demand value. They also found (implicitly) an instance of the Ring Loading Problem with L=L+1.01DL = L^* + 1.01D. Recently, Skutella [Sku16] improved these bounds by showing that LL+1914DL \leq L^* + \frac{19}{14}D, and there exists an instance with L=L+1.1DL = L^* + 1.1D. We contribute to this line of research by showing that LL+1.3DL \leq L^* + 1.3D. We also take a first step towards lower and upper bounds for small instances

    Bounding biomass in the Fisher equation

    Full text link
    The FKPP equation with a variable growth rate and advection by an incompressible velocity field is considered as a model for plankton dispersed by ocean currents. If the average growth rate is negative then the model has a survival-extinction transition; the location of this transition in the parameter space is constrained using variational arguments and delimited by simulations. The statistical steady state reached when the system is in the survival region of parameter space is characterized by integral constraints and upper and lower bounds on the biomass and productivity that follow from variational arguments and direct inequalities. In the limit of zero-decorrelation time the velocity field is shown to act as Fickian diffusion with an eddy diffusivity much larger than the molecular diffusivity and this allows a one-dimensional model to predict the biomass, productivity and extinction transitions. All results are illustrated with a simple growth and stirring model.Comment: 32 Pages, 13 Figure

    High Radiation Resistant DC-DC Converter Regulators for use in Magnetic fields for LHC High Luminosity Silicon Trackers

    Get PDF
    For more efficient power transport to the electronics embedded inside large colliding beam detectors, we explore the feasibility of supplying higher DC voltage and using local DC-DC conversion to 1.3 V (or lower, depending upon on the lithography of the embedded electronics) using switch mode regulators located very close to the front end electronics. These devices will be exposed to high radiation and high magnetic fields, 10 – 100 Mrads and 2 - 4 Tesla at the SLHC
    corecore