11,088 research outputs found
Conserving Approximations in Time-Dependent Density Functional Theory
In the present work we propose a theory for obtaining successively better
approximations to the linear response functions of time-dependent density or
current-density functional theory. The new technique is based on the
variational approach to many-body perturbation theory (MBPT) as developed
during the sixties and later expanded by us in the mid nineties. Due to this
feature the resulting response functions obey a large number of conservation
laws such as particle and momentum conservation and sum rules. The quality of
the obtained results is governed by the physical processes built in through
MBPT but also by the choice of variational expressions. We here present several
conserving response functions of different sophistication to be used in the
calculation of the optical response of solids and nano-scale systems.Comment: 11 pages, 4 figures, revised versio
Global fixed point proof of time-dependent density-functional theory
We reformulate and generalize the uniqueness and existence proofs of
time-dependent density-functional theory. The central idea is to restate the
fundamental one-to-one correspondence between densities and potentials as a
global fixed point question for potentials on a given time-interval. We show
that the unique fixed point, i.e. the unique potential generating a given
density, is reached as the limiting point of an iterative procedure. The
one-to-one correspondence between densities and potentials is a straightforward
result provided that the response function of the divergence of the internal
forces is bounded. The existence, i.e. the v-representability of a density, can
be proven as well provided that the operator norms of the response functions of
the members of the iterative sequence of potentials have an upper bound. The
densities under consideration have second time-derivatives that are required to
satisfy a condition slightly weaker than being square-integrable. This approach
avoids the usual restrictions of Taylor-expandability in time of the uniqueness
theorem by Runge and Gross [Phys.Rev.Lett.52, 997 (1984)] and of the existence
theorem by van Leeuwen [Phys.Rev.Lett. 82, 3863 (1999)]. Owing to its
generality, the proof not only answers basic questions in density-functional
theory but also has potential implications in other fields of physics.Comment: 4 pages, 1 figur
Kadanoff-Baym approach to time-dependent quantum transport in AC and DC fields
We have developed a method based on the embedded Kadanoff-Baym equations to
study the time evolution of open and inhomogeneous systems. The equation of
motion for the Green's function on the Keldysh contour is solved using
different conserving many-body approximations for the self-energy. Our
formulation incorporates basic conservation laws, such as particle
conservation, and includes both initial correlations and initial embedding
effects, without restrictions on the time-dependence of the external driving
field. We present results for the time-dependent density, current and dipole
moment for a correlated tight binding chain connected to one-dimensional
non-interacting leads exposed to DC and AC biases of various forms. We find
that the self-consistent 2B and GW approximations are in extremely good
agreement with each other at all times, for the long-range interactions that we
consider. In the DC case we show that the oscillations in the transients can be
understood from interchain and lead-chain transitions in the system and find
that the dominant frequency corresponds to the HOMO-LUMO transition of the
central wire. For AC biases with odd inversion symmetry odd harmonics to high
harmonic order in the driving frequency are observed in the dipole moment,
whereas for asymmetric applied bias also even harmonics have considerable
intensity. In both cases we find that the HOMO-LUMO transition strongly mixes
with the harmonics leading to harmonic peaks with enhanced intensity at the
HOMO-LUMO transition energy.Comment: 16 pages, 9 figures. Submitted at "Progress in Nonequilibrium Green's
Functions IV" conferenc
Correlation effects in bistability at the nanoscale: steady state and beyond
The possibility of finding multistability in the density and current of an
interacting nanoscale junction coupled to semi-infinite leads is studied at
various levels of approximation. The system is driven out of equilibrium by an
external bias and the non-equilibrium properties are determined by real-time
propagation using both time-dependent density functional theory (TDDFT) and
many-body perturbation theory (MBPT). In TDDFT the exchange-correlation effects
are described within a recently proposed adiabatic local density approximation
(ALDA). In MBPT the electron-electron interaction is incorporated in a
many-body self-energy which is then approximated at the Hartree-Fock (HF),
second-Born (2B) and GW level. Assuming the existence of a steady-state and
solving directly the steady-state equations we find multiple solutions in the
HF approximation and within the ALDA. In these cases we investigate if and how
these solutions can be reached through time evolution and how to reversibly
switch between them. We further show that for the same cases the inclusion of
dynamical correlation effects suppresses bistability.Comment: 13 pages, 12 figure
Optimising the multiplex factor of the frequency domain multiplexed readout of the TES-based microcalorimeter imaging array for the X-IFU instrument on the Athena Xray observatory
Athena is a space-based X-ray observatory intended for exploration of the hot
and energetic universe. One of the science instruments on Athena will be the
X-ray Integrated Field Unit (X-IFU), which is a cryogenic X-ray spectrometer,
based on a large cryogenic imaging array of Transition Edge Sensors (TES) based
microcalorimeters operating at a temperature of 100mK. The imaging array
consists of 3800 pixels providing 2.5 eV spectral resolution, and covers a
field of view with a diameter of of 5 arc minutes. Multiplexed readout of the
cryogenic microcalorimeter array is essential to comply with the cooling power
and complexity constraints on a space craft. Frequency domain multiplexing has
been under development for the readout of TES-based detectors for this purpose,
not only for the X-IFU detector arrays but also for TES-based bolometer arrays
for the Safari instrument of the Japanese SPICA observatory. This paper
discusses the design considerations which are applicable to optimise the
multiplex factor within the boundary conditions as set by the space craft. More
specifically, the interplay between the science requirements such as pixel
dynamic range, pixel speed, and cross talk, and the space craft requirements
such as the power dissipation budget, available bandwidth, and electromagnetic
compatibility will be discussed
Rotation periods of late-type stars in the young open cluster IC 2602
We present the results of a monitoring campaign aimed at deriving rotation
periods for a representative sample of stars in the young (30 Myr) open cluster
IC 2602. Rotation periods were derived for 29 of 33 stars monitored. The
periods derived range from 0.2d (one of the shortest known rotation periods of
any single open cluster star) to about 10d (which is almost twice as long as
the longest period previously known for a cluster of this age). We are able to
confirm 8 previously known periods and derive 21 new ones, delineating the long
period end of the distribution. Despite our sensitivity to longer periods, we
do not detect any variables with periods longer than about 10d. The combination
of these data with those for IC 2391, an almost identical cluster, leads to the
following conclusions:
1) The fast rotators in a 30 Myr cluster are distributed across the entire
0.5 < B-V < 1.6 color range.
2) 6 stars in our sample are slow rotators, with periods longer than 6d.
3) The amplitude of variability depends on both the color and the period. The
dependence on the latter might be important in understanding the selection
effects in the currently available rotation period database and in planning
future observations.
4) The interpretation of these data in terms of theoretical models of
rotating stars suggests both that disk-interaction is the norm rather than the
exception in young stars and that disk-locking times range from zero to a few
Myr.Comment: 23 pages, 8 figures, accepted for publication in the Astrophysical
Journa
Evidence for nonhadronic degrees of freedom in the transverse mass spectra of kaons from relativistic nucleus-nucleus collisions?
We investigate transverse hadron spectra from relativistic nucleus-nucleus
collisions which reflect important aspects of the dynamics - such as the
generation of pressure - in the hot and dense zone formed in the early phase of
the reaction. Our analysis is performed within two independent transport
approaches (HSD and UrQMD) that are based on quark, diquark, string and
hadronic degrees of freedom. Both transport models show their reliability for
elementary as well as light-ion (C+C, Si+Si) reactions. However, for
central Au+Au (Pb+Pb) collisions at bombarding energies above 5
AGeV the measured transverse mass spectra have a larger
inverse slope parameter than expected from the calculation. Thus the pressure
generated by hadronic interactions in the transport models above 5
AGeV is lower than observed in the experimental data. This finding shows
that the additional pressure - as expected from lattice QCD calculations at
finite quark chemical potential and temperature - is generated by strong
partonic interactions in the early phase of central Au+Au (Pb+Pb) collisions.Comment: 4 pages, 3 figures,discussions extended, references added, to be
published in Phys. Rev. Let
A deconvolution map-making method for experiments with circular scanning strategies
Aims. To investigate the performance of a deconvolution map-making algorithm
for an experiment with a circular scanning strategy, specifically in this case
for the analysis of Planck data, and to quantify the effects of making maps
using simplified approximations to the true beams. Methods. We present an
implementation of a map-making algorithm which allows the combined treatment of
temperature and polarisation data, and removal of instrumental effects, such as
detector time constants and finite sampling intervals, as well as the
deconvolution of arbitrarily complex beams from the maps. This method may be
applied to any experiment with a circular scanning-strategy. Results.
Low-resolution experiments were used to demonstrate the ability of this method
to remove the effects of arbitrary beams from the maps and to demonstrate the
effects on the maps of ignoring beam asymmetries. Additionally, results are
presented of an analysis of a realistic full-scale simulated data-set for the
Planck LFI 30 GHz channel. Conclusions. Our method successfully removes the
effects of the beams from the maps, and although it is computationally
expensive, the analysis of the Planck LFI data should be feasible with this
approach.Comment: 14 pages, 14 figures, accepte
Total energies from variational functionals of the Green function and the renormalized four-point vertex
We derive variational expressions for the grand potential or action in terms
of the many-body Green function which describes the propagation of
particles and the renormalized four-point vertex which describes the
scattering of two particles in many-body systems. The main ingredient of the
variational functionals is a term we denote as the -functional which plays
a role analogously to the usual -functional studied by Baym (G.Baym,
Phys.Rev. 127, 1391 (1962)) in connection with the conservation laws in
many-body systems. We show that any -derivable theory is also
-derivable and therefore respects the conservation laws. We further set
up a computational scheme to obtain accurate total energies from our
variational functionals without having to solve computationally expensive sets
of self-consistent equations. The input of the functional is an approximate
Green function and an approximate four-point vertex
obtained at a relatively low computational cost. The
variational property of the functional guarantees that the error in the total
energy is only of second order in deviations of the input Green function and
vertex from the self-consistent ones that make the functional stationary. The
functionals that we will consider for practical applications correspond to
infinite order summations of ladder and exchange diagrams and are therefore
particularly suited for applications to highly correlated systems. Their
practical evaluation is discussed in detail.Comment: 21 pages, 10 figures. Physical Review B (accepted
On the Kirzhnits gradient expansion in two dimensions
We derive the semiclassical Kirzhnits expansion of the D-dimensional
one-particle density matrix up to the second order in . We focus on the
two-dimensional (2D) case and show that all the gradient corrections both to
the 2D one-particle density and to the kinetic energy density vanish. However,
the 2D Kirzhnits expansion satisfies the consistency criterion of Gross and
Proetto [J. Chem. Theory Comput. 5, 844 (2009)] for the functional derivatives
of the density and the noninteracting kinetic energy with respect to the
Kohn-Sham potential. Finally we show that the gradient correction to the
exchange energy diverges in agreement with the previous linear-response study
- …
