1,220 research outputs found
Recommended from our members
China’s Currency: An Analysis of the Economic Issues
[Excerpt] This report provides an overview of the economic issues surrounding the current debate over China’s currency policy. It identifies the economic costs and benefits of China’s currency policy for both China and the United States, and possible implications if China were to allow its currency to significantly appreciate or to float freely. It also examines proposed legislation in the 111th Congress that seek to address China’s currency policy
Globalization, Global Governance and the Social Determinants of Health: A review of the linkages and agenda for action
The Globalization Knowledge Network (GKN) was
formed in 2005 with the purpose of examining how
contemporary globalization was influencing social
determinants of health. It was one of nine Knowledge
Networks providing evidence-informed guidance
to the work of the World Health Organization’s
Commission on Social Determinants of Health
(2005-2008): like most of the Knowledge Networks,
its operations were financed by an external funder
(in this case, the International Affairs Directorate
of Health Canada, Canada’s national ministry of
health). The GKN conducted two face-to-face
meetings to debate, discuss, outline and review its
work, and produced thirteen background papers
and a Final Report. These papers and the Final
Report underwent extensive internal and external
peer review to ensure that their findings and policy
inferences accurately reflected available evidence
and scholarship.
This GKN publication series was prepared under
the general editorship of Ronald Labonté, with
assistance from Vivien Runnels and copy-editing
provided by Wayne Harding. All views expressed
are exclusively those of the authors. A complete
list of titles in the publication series appears on the
inside back cover of this monograph
Magnetic Energy and Helicity Budgets in the Active-Region Solar Corona. I. Linear Force-Free Approximation
We self-consistently derive the magnetic energy and relative magnetic
helicity budgets of a three-dimensional linear force-free magnetic structure
rooted in a lower boundary plane. For the potential magnetic energy we derive a
general expression that gives results practically equivalent to those of the
magnetic Virial theorem. All magnetic energy and helicity budgets are
formulated in terms of surface integrals applied to the lower boundary, thus
avoiding computationally intensive three-dimensional magnetic field
extrapolations. We analytically and numerically connect our derivations with
classical expressions for the magnetic energy and helicity, thus presenting a
so-far lacking unified treatment of the energy/helicity budgets in the
constant-alpha approximation. Applying our derivations to photospheric vector
magnetograms of an eruptive and a noneruptive solar active regions, we find
that the most profound quantitative difference between these regions lies in
the estimated free magnetic energy and relative magnetic helicity budgets. If
this result is verified with a large number of active regions, it will advance
our understanding of solar eruptive phenomena. We also find that the
constant-alpha approximation gives rise to large uncertainties in the
calculation of the free magnetic energy and the relative magnetic helicity.
Therefore, care must be exercised when this approximation is applied to
photospheric magnetic field observations. Despite its shortcomings, the
constant-alpha approximation is adopted here because this study will form the
basis of a comprehensive nonlinear force-free description of the energetics and
helicity in the active-region solar corona, which is our ultimate objective.Comment: 44 pages, 8 figures, 2 tables. The Astrophysical Journal, in pres
Structural diversity in the type IV pili of multidrug-resistant Acinetobacter
Acinetobacter baumannii is a Gram-negative coccobacillus found primarily in hospital settings that has recently emerged as a source of hospital-acquired infections. A. baumannii expresses a variety of virulence factors, including type IV pili, bacterial extracellular appendages often essential for attachment to host cells. Here, we report the high resolution structures of the major pilin subunit, PilA, from three Acinetobacter strains, demonstrating thatA. baumannii subsets produce morphologically distinct type IV pilin glycoproteins. We examine the consequences of this heterogeneity for protein folding and assembly as well as host-cell adhesion by Acinetobacter. Comparisons of genomic and structural data with pilin proteins from other species of soil gammaproteobacteria suggest that these structural differences stem from evolutionary pressure that has resulted in three distinct classes of type IVa pilins, each found in multiple species
Solar Flares and Coronal Mass Ejections: A Statistically Determined Flare Flux-CME Mass Correlation
In an effort to examine the relationship between flare flux and corresponding
CME mass, we temporally and spatially correlate all X-ray flares and CMEs in
the LASCO and GOES archives from 1996 to 2006. We cross-reference 6,733 CMEs
having well-measured masses against 12,050 X-ray flares having position
information as determined from their optical counterparts. For a given flare,
we search in time for CMEs which occur 10-80 minutes afterward, and we further
require the flare and CME to occur within +/-45 degrees in position angle on
the solar disk. There are 826 CME/flare pairs which fit these criteria.
Comparing the flare fluxes with CME masses of these paired events, we find CME
mass increases with flare flux, following an approximately log-linear, broken
relationship: in the limit of lower flare fluxes, log(CME mass)~0.68*log(flare
flux), and in the limit of higher flare fluxes, log(CME mass)~0.33*log(flare
flux). We show that this broken power-law, and in particular the flatter slope
at higher flare fluxes, may be due to an observational bias against CMEs
associated with the most energetic flares: halo CMEs. Correcting for this bias
yields a single power-law relationship of the form log(CME mass)~0.70*log(flare
flux). This function describes the relationship between CME mass and flare flux
over at least 3 dex in flare flux, from ~10^-7 to 10^-4 W m^-2.Comment: 28 pages, 16 figures, accepted to Solar Physic
The X10 Flare on 2003 October 29: Triggered by Magnetic Reconnection between Counter-Helical Fluxes?
Vector magnetograms taken at Huairou Solar Observing Station (HSOS) and Mees
Solar Observatory (MSO) reveal that the super active region (AR) NOAA 10486 was
a complex region containing current helicity flux of opposite signs. The main
positive sunspots were dominated by negative helicity fields, while positive
helicity patches persisted both inside and around the main positive sunspots.
Based on a comparison of two days of deduced current helicity density,
pronounced changes were noticed which were associated with the occurrence of an
X10 flare that peaked at 20:49 UT, 2003 October 29. The average current
helicity density (negative) of the main sunspots decreased significantly by
about 50. Accordingly, the helicity densities of counter-helical patches
(positive) were also found to decay by the same proportion or more. In
addition, two hard X-ray (HXR) `footpoints' were observed by the Reuven Ramaty
High Energy Solar Spectroscopic Imager (RHESSI} during the flare in the 50-100
keV energy range. The cores of these two HXR footpoints were adjacent to the
positions of two patches with positive current helicity which disappeared after
the flare. This strongly suggested that the X10 flare on 2003 Oct. 29 resulted
from reconnection between magnetic flux tubes having opposite current helicity.
Finally, the global decrease of current helicity in AR 10486 by ~50% can be
understood as the helicity launched away by the halo coronal mass ejection
(CME) associated with the X10 flare.Comment: Solar Physics, 2007, in pres
Alien Registration- Labonte, Helen M. (Rumford, Oxford County)
https://digitalmaine.com/alien_docs/12094/thumbnail.jp
The global oscillation network group site survey. II. Results
The Global Oscillation Network Group (GONG) Project will place a network of instruments around the world to observe solar oscillations as continuously as possible for three years. The Project has now chosen the six network sites based on analysis of survey data from fifteen sites around the world. The chosen sites are: Big Bear Solar Observatory, California; Mauna Loa Solar Observatory, Hawaii; Learmonth Solar Observatory, Australia; Udaipur Solar Observatory, India; Observatorio del Teide, Tenerife; and Cerro Tololo Interamerican Observatory, Chile.
Total solar intensity at each site yields information on local cloud cover, extinction coefficient, and transparency fluctuations. In addition, the performance of 192 reasonable components analysis. An accompanying paper describes the analysis methods in detail; here we present the results of both the network and individual site analyses.
The selected network has a duty cycle of 93.3%, in good agreement with numerical simulations. The power spectrum of the network observing window shows a first diurnal sidelobe height of 3 × 10⁻⁴ with respect to the central component, an improvement of a factor of 1300 over a single site. The background level of the network spectrum is lower by a factor of 50 compared to a single-site spectrum
Modelling and Interpreting The Effects of Spatial Resolution on Solar Magnetic Field Maps
Different methods for simulating the effects of spatial resolution on
magnetic field maps are compared, including those commonly used for
inter-instrument comparisons. The investigation first uses synthetic data, and
the results are confirmed with {\it Hinode}/SpectroPolarimeter data. Four
methods are examined, one which manipulates the Stokes spectra to simulate
spatial-resolution degradation, and three "post-facto" methods where the
magnetic field maps are manipulated directly. Throughout, statistical
comparisons of the degraded maps with the originals serve to quantify the
outcomes. Overall, we find that areas with inferred magnetic fill fractions
close to unity may be insensitive to optical spatial resolution; areas of
sub-unity fill fractions are very sensitive. Trends with worsening spatial
resolution can include increased average field strength, lower total flux, and
a field vector oriented closer to the line of sight. Further-derived quantities
such as vertical current density show variations even in areas of high average
magnetic fill-fraction. In short, unresolved maps fail to represent the
distribution of the underlying unresolved fields, and the "post-facto" methods
generally do not reproduce the effects of a smaller telescope aperture. It is
argued that selecting a method in order to reconcile disparate spatial
resolution effects should depend on the goal, as one method may better preserve
the field distribution, while another can reproduce spatial resolution
degradation. The results presented should help direct future inter-instrument
comparisons.Comment: Accepted for publication in Solar Physics. The final publication
(including full-resolution figures) will be available at
http://www.springerlink.co
Does the Babcock--Leighton Mechanism Operate on the Sun?
The contribution of the Babcock-Leighton mechanism to the generation of the
Sun's poloidal magnetic field is estimated from sunspot data for three solar
cycles. Comparison of the derived quantities with the A-index of the
large-scale magnetic field suggests a positive answer to the question posed in
the title of this paper.Comment: 5 pages, 2 figures, to apper in Astronomy Letter
- …
