6 research outputs found
Attractor Metadynamics in Adapting Neural Networks
Slow adaption processes, like synaptic and intrinsic plasticity, abound in
the brain and shape the landscape for the neural dynamics occurring on
substantially faster timescales. At any given time the network is characterized
by a set of internal parameters, which are adapting continuously, albeit
slowly. This set of parameters defines the number and the location of the
respective adiabatic attractors. The slow evolution of network parameters hence
induces an evolving attractor landscape, a process which we term attractor
metadynamics. We study the nature of the metadynamics of the attractor
landscape for several continuous-time autonomous model networks. We find both
first- and second-order changes in the location of adiabatic attractors and
argue that the study of the continuously evolving attractor landscape
constitutes a powerful tool for understanding the overall development of the
neural dynamics
