88 research outputs found
Male Red Ornamentation Is Associated with Female Red Sensitivity in Sticklebacks
Sexual selection theory proposes correlated evolutionary changes in mating preferences and secondary sexual characters based on a positive genetic correlation between preference and the preferred trait. Empirical work has provided support for a genetic covariation between female preference and male attractiveness in several taxa. Here, we study parent and offspring visual traits in threespine sticklebacks, Gasterosteus aculeatus. While focusing on the proximate basis of mating preferences, we compare the red breeding coloration of males, which strongly contributes to female choice, with their daughters' red sensitivity measured by optomotor response thresholds. We show that the red color expression of fathers correlates well with their daughters' red sensitivity. Given that a within-population genetic correlation between signal and preference was experimentally confirmed for the red coloration in sticklebacks, our results indicate a proximate mechanism in terms of perceptual sensitivity being involved in the co-evolution of female preferences and male mating signals
The role of dendritic cells in the immunopathogenesis of psoriasis
Psoriasis vulgaris is a chronic inflammatory skin disease that is marked by a complex interplay of dendritic cells (DCs), T-cells, cytokines, and downstream transcription factors as part of a self-sustaining type 1 cytokine network. As integral players of the immune system, DCs represent antigen-presenting cells that are crucial for efficient activation of T-cells and B-cells. DCs have also been linked to distinct chronic inflammatory conditions, including psoriasis. In the setting of psoriasis therapy, DC/T cell interactions serve as a potential target for biologic response modifiers. Here we describe the major DC subsets as well as the immunologic involvement of DCs within the context of psoriatic lesions
Microsatellite Support for Active Inbreeding in a Cichlid Fish
In wild animal populations, the degree of inbreeding differs between species and within species between populations. Because mating with kin often results in inbreeding depression, observed inbreeding is usually regarded to be caused by limited outbreeding opportunities due to demographic factors like small population size or population substructuring. However, theory predicts inclusive benefits from mating with kin, and thus part of the observed variation in inbreeding might be due to active inbreeding preferences. Although some recent studies indeed report kin mating preferences, the evidence is still highly ambiguous. Here, we investigate inbreeding in a natural population of the West African cichlid fish Pelvicachromis taeniatus which showed clear kin mating preferences in standardized laboratory experiments but no inbreeding depression. The presented microsatellite analysis reveals that the natural population has, in comparison to two reference populations, a reduced allelic diversity (A = 3) resulting in a low heterozygosity (Ho = 0.167) pointing to a highly inbred population. Furthermore, we found a significant heterozygote deficit not only at population (Fis = 0.116) but also at subpopulation level (Fis = 0.081) suggesting that inbreeding is not only a by-product of population substructuring but possibly a consequence of behavioral kin preferences
Quantification acuity in spontaneous shoaling decisions of three-spined sticklebacks
The ability to discriminate between different quantities is widespread throughout the animal kingdom, and the underlying mechanisms of quantity discrimination are currently intensely discussed. In contrast, questions elucidating the limits of quantity estimation received rather little attention so far. Here, we examined fine-tuned quantity estimation in the three-spined stickleback (Gasterosteus aculeatus) in a natural context, i.e. during shoaling decisions. Wild-caught focal fish were given the spontaneous choice between two shoals which differed in group size by 1 fish (0 vs. 1, 1 vs. 2, 2 vs. 3, 3 vs. 4, 4 vs. 5, 5 vs. 6 and 6 vs. 7), based on visual assessment. The results show that sticklebacks generally prefer to shoal with the larger group. They discriminated numerical contrasts up to 6 versus 7, equalling a numerical ratio of 0.86. Preference patterns followed Weber’s law, i.e. decreased with increasing numerical ratio. This pattern was found across all numerical conditions as well as within the small number range (ranging from 1 vs. 2 to 3 vs. 4). The results suggest that wild-caught three-spined sticklebacks are spontaneously able (i.e. without prior learning) to detect subtle differences in shoal sizes. Further, they confirm findings of previous studies highlighting the contribution of the analogue magnitude system to quantity estimation in fishes
The influence of ambient water temperature on sperm performance and fertilization success in three-spined sticklebacks (Gasterosteus aculeatus)
Inbreeding in three-spined sticklebacks (Gasterosteus aculeatus L.): effects on testis and sperm traits
Mating between relatives often results in inbreeding depression, and is assumed to have a strong effect on fitness traits such as fertility and gonad/gamete quality. However, data concerning this topic are contradictory and particularly scarce in fishes. Three-spined sticklebacks (Gasterosteus aculeatus L.) show inbreeding depression in fertilization and hatching success, survival rates, body symmetry and behavioural traits. To date, any knowledge of the impact of inbreeding on males ’ gonads and gametes is lacking in this species. In the present study, testis and sperm traits were quantified in outbred and inbred males. Overall, these traits were not generally impaired by inbreeding, and this result was not changed by a second/third generation of brother–sister matings. However, testes brightness, a potential measure of oxidative stress, was negatively correlated with sperm number. Addi-tionally, inbred males with higher body condition had significantly brighter testes, whereas their sperm number was significantly negatively correlated with sperm quality (as estimated by head volume). Such a trade-off did not appear in outbred males. The comparatively small impact of inbreeding on testis and sperm traits might be explained by the low number of inbred individuals that reached the reproductive phase. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, , ••–••. ADDITIONAL KEYWORDS: fish – heterozygosity – reproduction – sexual selection – sperm competition – testicular melanization
triggers fine-tuned decisions about filial cannibalism To eat or not to eat: egg-based assessment of paternity References Subject collections To eat or not to eat: egg-based assessment of paternity triggers fine-tuned decisions about filial cannibalism
Filial cannibalism occurs in many animal species ranging from insects to mammals, and is especially well described in teleost fishes. Numerous causes may lead to this behaviour, e.g. certainty of paternity. However, the cues males use to assess their paternity often remain unknown. One possible way to differentiate between own and foreign offspring is by using egg cues. Nevertheless, in egg-laying species, evidence for this is still scarce. In this study, male three-spined sticklebacks (Gasterosteus aculeatus), a fish with paternal care in which sneaking as well as filial cannibalism is common, were allowed to care for manipulated nests that contained different percentages of own fertilized eggs. After 7 days, embryo survival was determined. Furthermore, brood-caring as well as aggressive behaviour was measured daily. Clutches containing a higher proportion of foreign eggs were more likely to be completely cannibalized than clutches containing a lower proportion of foreign eggs, particularly when the clutch was laid early in the breeding season. However, the behavioural observations revealed no influence of paternity. The results show that paternity triggers filial cannibalism in sticklebacks and that males are able to evaluate their paternity using egg cues alone
Predator-inspection behaviour in female three-spined sticklebacks Gasterosteus aculeatus is associated with status of gravidity
Attractive males have faster sperm in three-spined sticklebacks Gasterosteus aculeatus
Abstract
Recent studies have revealed that sexually selected traits may signal sperm quality and hence male fertilisation ability. There is also evidence that the expression of male sexual ornamentation and associated sperm characteristics depend on an individual’s ability to cope with oxidative stress. Carotenoids are known for their antioxidant properties and carotenoid-based ornaments might represent honest signals as these pigments can be traded off between the investment in sexual ornamentation, sperm function as well as immune response. In this study, we examined the relationship between sexual ornamentation (breeding coloration) and sperm characteristics (e.g., velocity and morphology) in the three-spined stickleback Gasterosteus aculeatus, an externally fertilising fish species, in which sperm competition commonly occurs. During the breeding season males are sperm limited and develop a conspicuous carotenoid-based coloration, which is under strong pre-copulatory sexual selection due to female mate choice and male-male competition. The results of the present study show that the expression of stickleback male breeding coloration is significantly positively associated with the linearity of sperm movement, whereas sperm morphology (head length to tail length ratio) is significantly negatively related to the trajectory of sperm movement. Moreover, there is some support for the phenotype-linked fertility hypothesis as the intensity of male red breeding coloration is significantly positively correlated with sperm velocity, which is supposed to be an important determinant of fertilisation success in external fertilisers, indicating the honesty of the sexually selected nuptial red coloration.</jats:p
- …
