1,479 research outputs found
Molecular Marker Linkage Map for Apple
Linkage maps for two apple clones, White Angel and Rome Beauty, were constructed using isozyme and DNA polymorphisms segregating in a population produced from a Rome Beauty × White Angel cross. The linkage map for White Angel consists of 253 markers arranged in 24 linkage groups and extends over 950 cM. The Rome Beauty map contains 156 markers on 21 linkage groups. The White Angel map was taken as the standard, and we were able to identify linkage groups in Rome Beauty homologous to 13 White Angel linkage groups. The location of several genes not segregating in the Rome Beauty × White Angel population could be determined on the basis of known linkages with segregating markers. Hence, the standard map for apple now contains about 360 markers, with most linkage groups saturated at 10-15 cM. The double pseudotestcross format of the mapping population permitted the comparison of recombination frequencies in male and female parents in certain regions of the genome where appropriate markers were available. The recombination frequencies observed for the approximately 170 cM that were comparable gave no indication that a sex-related difference in recombination rate was characteristic of appl
Structure and play: rethinking regulation in the higher education sector
This paper explores possible tactics for academics working within a context of increasing regulation and constraint. One suggested tactic is to move outside of a creativity-conformity binary. Rather than understanding creativity and conformity as separable, where one is seen as excluding the other, the authors consider the potential of examining the relationships between them. The theme of 'structure and play' illustrates the argument. In the first part of the paper, using various examples from art and design - fields generally associated with creativity - the authors explore the interrelatedness of creativity and conformity. For example, how might design styles, which are generally understood as creative outcomes, constrain creativity and lead to conformity within the design field? Is fashion producing creativity or conformity? Conversely, the ways in which conformity provides the conditions for creativity are also examined. For example, the conformity imposed by the state on artists in the former communist bloc contributed to a thriving underground arts movement which challenged conformity and state regulation. Continuing the theme of 'structure and play', the authors recount a story from an Australian university which foregrounds the ongoing renegotiation of power relations in the academy. This account illustrates how programmatic government in a university, with its aim of regulating conduct, can contribute to unanticipated outcomes. The authors propose that a Foucauldian view of distributed power is useful for academics operating in a context of increasing regulation, as it brings into view sites where power might begin to be renegotiated
Sequencing PDX1 (insulin promoter factor 1) in 1788 UK individuals found 5% had a low frequency coding variant, but these variants are not associated with Type 2 diabetes
OnlineOpen Article. This is a copy of an article published in Diabetic Medicine. This journal is available online at: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1464-5491Genome-wide association studies have identified >30 common variants associated with Type 2 diabetes (>5% minor allele frequency). These variants have small effects on individual risk and do not account for a large proportion of the heritable component of the disease. Monogenic forms of diabetes are caused by mutations that occur in <1:2000 individuals and follow strict patterns of inheritance. In contrast, the role of low frequency genetic variants (minor allele frequency 0.1-5%) in Type 2 diabetes is not known. The aim of this study was to assess the role of low frequency PDX1 (also called IPF1) variants in Type 2 diabetes
Improved genetic testing for monogenic diabetes using targeted next-generation sequencing
addresses: Institute for Biomedical and Clinical Science, University of Exeter Medical School, Barrack Road, Exeter EX2 5DW, UK. [email protected]: PMCID: PMC3737433types: Journal Article; Research Support, Non-U.S. Gov'tOpen Access ArticleCurrent genetic tests for diagnosing monogenic diabetes rely on selection of the appropriate gene for analysis according to the patient's phenotype. Next-generation sequencing enables the simultaneous analysis of multiple genes in a single test. Our aim was to develop a targeted next-generation sequencing assay to detect mutations in all known MODY and neonatal diabetes genes
From the cell membrane to the nucleus: unearthing transport mechanisms for Dynein
Mutations in the motor protein cytoplasmic dynein have been found to cause Charcot-Marie-Tooth disease, spinal muscular atrophy, and severe intellectual disabilities in humans. In mouse models, neurodegeneration is observed. We sought to develop a novel model which could incorporate the effects of mutations on distance travelled and velocity. A mechanical model for the dynein mediated transport of endosomes is derived from first principles and solved numerically. The effects of variations in model parameter values are analysed to find those that have a significant impact on velocity and distance travelled. The model successfully describes the processivity of dynein and matches qualitatively the velocity profiles observed in experiments
TEAD and YAP regulate the enhancer network of human embryonic pancreatic progenitors.
The genomic regulatory programmes that underlie human organogenesis are poorly understood. Pancreas development, in particular, has pivotal implications for pancreatic regeneration, cancer and diabetes. We have now characterized the regulatory landscape of embryonic multipotent progenitor cells that give rise to all pancreatic epithelial lineages. Using human embryonic pancreas and embryonic-stem-cell-derived progenitors we identify stage-specific transcripts and associated enhancers, many of which are co-occupied by transcription factors that are essential for pancreas development. We further show that TEAD1, a Hippo signalling effector, is an integral component of the transcription factor combinatorial code of pancreatic progenitor enhancers. TEAD and its coactivator YAP activate key pancreatic signalling mediators and transcription factors, and regulate the expansion of pancreatic progenitors. This work therefore uncovers a central role for TEAD and YAP as signal-responsive regulators of multipotent pancreatic progenitors, and provides a resource for the study of embryonic development of the human pancreas
Gender politics in 21st century literacy reform
From 2001 to 2004 Education Queensland undertook significant literacy reform in schools through the Literate Futures Project. Research into the impact of this reform has revealed that significant demands were placed on women at all levels, from those producing resources to those leading change within schools. Although the reform was a government response to globalisation, many women were driven by a commitment to a collaborative approach to professional learning that addressed equity and improving educational outcomes for all students. But what was the cost of this commitment to the project? Failure to acknowledge the emotion work demanded by educational reform effectively silences women and the significant contribution they make. This paper examining a 21st century literacy reform draws on the work of Fraser and Boler to argue for gender justice and acknowledgement of emotion work
Whole-genome sequencing to understand the genetic architecture of common gene expression and biomarker phenotypes.
Initial results from sequencing studies suggest that there are relatively few low-frequency (<5%) variants associated with large effects on common phenotypes. We performed low-pass whole-genome sequencing in 680 individuals from the InCHIANTI study to test two primary hypotheses: (i) that sequencing would detect single low-frequency-large effect variants that explained similar amounts of phenotypic variance as single common variants, and (ii) that some common variant associations could be explained by low-frequency variants. We tested two sets of disease-related common phenotypes for which we had statistical power to detect large numbers of common variant-common phenotype associations-11 132 cis-gene expression traits in 450 individuals and 93 circulating biomarkers in all 680 individuals. From a total of 11 657 229 high-quality variants of which 6 129 221 and 5 528 008 were common and low frequency (<5%), respectively, low frequency-large effect associations comprised 7% of detectable cis-gene expression traits [89 of 1314 cis-eQTLs at P < 1 × 10(-06) (false discovery rate ∼5%)] and one of eight biomarker associations at P < 8 × 10(-10). Very few (30 of 1232; 2%) common variant associations were fully explained by low-frequency variants. Our data show that whole-genome sequencing can identify low-frequency variants undetected by genotyping based approaches when sample sizes are sufficiently large to detect substantial numbers of common variant associations, and that common variant associations are rarely explained by single low-frequency variants of large effect
Human longevity is influenced by many genetic variants: evidence from 75,000 UK Biobank participants
This is the final version of the article. Available from the publisher via the DOI in this record.Variation in human lifespan is 20 to 30% heritable in twins but few genetic variants have been identified. We undertook a Genome Wide Association Study (GWAS) using age at death of parents of middle-aged UK Biobank participants of European decent (n=75,244 with father's and/or mother's data, excluding early deaths). Genetic risk scores for 19 phenotypes (n=777 proven variants) were also tested. In GWAS, a nicotine receptor locus(CHRNA3, previously associated with increased smoking and lung cancer) was associated with fathers' survival. Less common variants requiring further confirmation were also identified. Offspring of longer lived parents had more protective alleles for coronary artery disease, systolic blood pressure, body mass index, cholesterol and triglyceride levels, type-1 diabetes, inflammatory bowel disease and Alzheimer's disease. In candidate analyses, variants in the TOMM40/APOE locus were associated with longevity, but FOXO variants were not. Associations between extreme longevity (mother >=98 years, fathers >=95 years, n=1,339) and disease alleles were similar, with an additional association with HDL cholesterol (p=5.7x10-3). These results support a multiple protective factors model influencing lifespan and longevity (top 1% survival) in humans, with prominent roles for cardiovascular-related pathways. Several of these genetically influenced risks, including blood pressure and tobacco exposure, are potentially modifiable.This work was generously funded by an award to DM,
TF, AM, LH and CB by the Medical Research Council
MR/M023095/1. This research has been conducted
using the UK Biobank Resource, under application
1417. The authors wish to thank the UK Biobank
participants and coordinators for this unique dataset.
S.E.J. is funded by the Medical Research Council
(grant: MR/M005070/1). J.T. is funded by a Diabetes
Research and Wellness Foundation Fellowship. R.B. is
funded by the Wellcome Trust and Royal Society grant:
104150/Z/14/Z. M.A.T., M.N.W. and A.M. are
supported by the Wellcome Trust Institutional Strategic
Support Award (WT097835MF). R.M.F. is a Sir Henry
Dale Fellow (Wellcome Trust and Royal Society grant:
104150/Z/14/Z). A.R.W. H.Y., and T.M.F. are
supported by the European Research Council grant:
323195:GLUCOSEGENES-FP7-IDEAS-ERC. The
funders had no influence on study design, data
collection and analysis, decision to publish, or
preparation of the manuscript.
The Framingham Heart Study is supported by Contract
No. N01-HC-25195 and HHSN268201500001I and its
contract with Affymetrix, Inc for genotyping services
(Contract No. N02-HL-6-4278). The phenotypegenotype
association analyses were supported by
National Institute of Aging R01AG29451.
This work has made use of the resources provided by
the University of Exeter Science Strategy and resulting
Systems Biology initiative. Primarily these include
high-performance computing facilities managed by
Konrad Paszkiewicz of the College of Environmental
and Life Sciences and Pete Leggett of the University of
Exeter Academics services unit
- …
