1,094 research outputs found
Field dependence of electronic recoil signals in a dual-phase liquid xenon time projection chamber
We present measurements of light and charge signals in a dual-phase time
projection chamber at electric fields varying from 10 V/cm up to 500 V/cm and
at zero field using 511 keV gamma rays from a Na source. We determine
the drift velocity, electron lifetime, diffusion constant, and light and charge
yields at 511 keV as a function of the electric field. In addition, we fit the
scintillation pulse shape to an effective exponential model, showing a decay
time of 43.5 ns at low field that decreases to 25 ns at high fields.Comment: 14 pages, 8 figure
Vertex reconstruction algorithms in the PHOBOS experiment at RHIC
The PHOBOS experiment at the Relativistic Heavy Ion Collider (RHIC) at
Brookhaven National Laboratory is studying interactions of heavy nuclei at the
largest energies available in the laboratory. The high multiplicity of
particles created in heavy ion collisions makes precise vertex reconstruction
possible using information from a spectrometer and a specialized vertex
detector with relatively small acceptances. For lower multiplicity events, a
large acceptance, single layer multiplicity detector is used and special
algorithms are developed to reconstruct the vertex, resulting in high
efficiency at the expense of poorer resolution. The algorithms used in the
PHOBOS experiment and their performance are presented.Comment: presented at the Workshop on Tracking In high Multiplicity
Environments, TIME0
Neutrino CP violating parameters from nontrivial quark-lepton correlation: a S3xGUT model
We investigate the prediction on the lepton phases in theories with a non
trivial correlation between quark (CKM) and lepton (PMNS) mixing matrices. We
show that the actual evidence, under the only assumption that the correlation
matrix product of and has a zero in the entry , gives
us a prediction for the three CP-violating invariants , , and . A
better determination of the lepton mixing angles will give a strong prediction
of the CP-violating invariants in the lepton sector. These will be tested in
the next generation experiments. To clarify how our prediction works, we show
how a model based on a Grand Unified Theory and the permutation flavor symmetry
predicts .Comment: 7 pages, 3 figures. V2: new figure adde
Flux profile scanners for scattered high-energy electrons
The paper describes the design and performance of flux integrating Cherenkov
scanners with air-core reflecting light guides used in a high-energy, high-flux
electron scattering experiment at the Stanford Linear Accelerator Center. The
scanners were highly radiation resistant and provided a good signal to
background ratio leading to very good spatial resolution of the scattered
electron flux profile scans.Comment: 22 pages, 17 figure
A geoneutrino experiment at Homestake
A significant fraction of the 44TW of heat dissipation from the Earth's
interior is believed to originate from the decays of terrestrial uranium and
thorium. The only estimates of this radiogenic heat, which is the driving force
for mantle convection, come from Earth models based on meteorites, and have
large systematic errors. The detection of electron antineutrinos produced by
these uranium and thorium decays would allow a more direct measure of the total
uranium and thorium content, and hence radiogenic heat production in the Earth.
We discuss the prospect of building an electron antineutrino detector
approximately 700m^3 in size in the Homestake mine at the 4850' level. This
would allow us to make a measurement of the total uranium and thorium content
with a statistical error less than the systematic error from our current
knowledge of neutrino oscillation parameters. It would also allow us to test
the hypothesis of a naturally occurring nuclear reactor at the center of the
Earth.Comment: proceedings for Neutrino Sciences 2005, submitted to Earth, Moon, and
Planet
Precision Measurement of the Weak Mixing Angle in Moller Scattering
We report on a precision measurement of the parity-violating asymmetry in
fixed target electron-electron (Moller) scattering: A_PV = -131 +/- 14 (stat.)
+/- 10 (syst.) parts per billion, leading to the determination of the weak
mixing angle \sin^2\theta_W^eff = 0.2397 +/- 0.0010 (stat.) +/- 0.0008 (syst.),
evaluated at Q^2 = 0.026 GeV^2. Combining this result with the measurements of
\sin^2\theta_W^eff at the Z^0 pole, the running of the weak mixing angle is
observed with over 6 sigma significance. The measurement sets constraints on
new physics effects at the TeV scale.Comment: 4 pages, 2 postscript figues, submitted to Physical Review Letter
Excited States in 52Fe and the Origin of the Yrast Trap at I=12+
Excited states in 52Fe have been determined up to spin 10\hbar in the
reaction 28Si + 28Si at 115 MeV by using \gamma-ray spectroscopy methods at the
GASP array. The excitation energy of the yrast 10+ state has been determined to
be 7.381 MeV, almost 0.5 MeV above the well known \beta+-decaying yrast 12+
state, definitely confirming the nature of its isomeric character. The mean
lifetimes of the states have been measured by using the Doppler Shift
Attenuation method. The experimental data are compared with spherical shell
model calculations in the full pf-shell.Comment: 9 pages, RevTeX, 7 figures include
Comment on "On the subtleties of searching for dark matter with liquid xenon detectors"
In a recent manuscript (arXiv:1208.5046) Peter Sorensen claims that
XENON100's upper limits on spin-independent WIMP-nucleon cross sections for
WIMP masses below 10 GeV "may be understated by one order of magnitude or
more". Having performed a similar, though more detailed analysis prior to the
submission of our new result (arXiv:1207.5988), we do not confirm these
findings. We point out the rationale for not considering the described effect
in our final analysis and list several potential problems with his study.Comment: 3 pages, no figure
Centrality and pseudorapidity dependence of elliptic flow for charged hadrons in Au+Au collisions at sqrt(sNN) = 200 GeV
This paper describes the measurement of elliptic flow for charged particles
in Au+Au collisions at sqrt(sNN)=200 GeV using the PHOBOS detector at the
Relativistic Heavy Ion Collider (RHIC). The measured azimuthal anisotropy is
presented over a wide range of pseudorapidity for three broad collision
centrality classes for the first time at this energy. Two distinct methods of
extracting the flow signal were used in order to reduce systematic
uncertainties. The elliptic flow falls sharply with increasing eta at 200 GeV
for all the centralities studied, as observed for minimum-bias collisions at
sqrt(sNN)=130 GeV.Comment: Final published version: the most substantive change to the paper is
the inclusion of a complete description of how the errors from the hit-based
and track-based analyses are merged to produce the 90% C.L. errors quoted for
the combined results shown in Fig.
- …
