4,062 research outputs found

    The specificity of searches for WW^{\prime}, ZZ^{\prime} and γ\gamma^{\prime} coming from extra dimensions

    Get PDF
    We discuss the specificity of searches for hypothetical WW^{\prime}, ZZ^{\prime} and γ\gamma^{\prime} bosons at hadron colliders in single top quark and μ+νμ\mu^{+}\nu_{\mu} production and Drell-Yan processes assuming these particles to be the Kaluza-Klein excitations of the gauge bosons of the Standard Model. In this case any process mediated by WW is also mediated by the whole KK tower of its excitations, whereas to the processes mediated by ZZ and γ\gamma there is not only a contribution from their KK towers, but also from that of the graviton. The contributions of the towers above WW^{\prime}, ZZ^{\prime} and γ\gamma^{\prime} and above the first excitation of the graviton are included with the help of effective four-fermion Lagrangians. We compute the cross-sections of these processes taking into account the contributions of the Standard Model gauge bosons, of their first KK modes and of the corresponding KK towers and discuss the impact of the interference between them. For pp-collisions at the LHC with the center of mass energy 14 TeV we found specific changes of the distribution tails due to the interference effects. Such a modification of distribution tails is characteristic for the processes mediated by particles coming from extra dimensions and should always be taken into account when looking for them.Comment: 14 pages, 12 figures, LaTeX. References added, figures added, text enlarge

    Comparative Study of Multifragmentation of Gold Nuclei Induced by Relativistic Protons, 4^4He, and 12^{12}C

    Full text link
    Multiple emission of intermediate-mass fragments has been studied for the collisions of p, 4^4He and 12^{12}C on Au with the 4π4\pi setup FASA. The mean IMF multiplicities (for the events with at least one IMF) are saturating at the value of 2.2±0.22.2\pm0.2 for the incident energies above 6 GeV. The observed IMF multiplicities cannot be described in a two-stage scenario, a fast cascade followed by a statistical multifragmentation. Agreement with the measured IMF multiplicities is obtained by introducing an intermediate phase and modifying empirically the excitation energies and masses of the remnants. The angular distributions and energy spectra from the p-induced collisions are in agreement with the scenario of ``thermal'' multifragmentation of a hot and diluted target spectator. In the case of 12^{12}C+Au(22.4 GeV) and 4^4He(14.6 GeV)+Au collisions, deviations from a pure thermal break-up are seen in the energy spectra of the emitted fragments, which are harder than those both from model calculations and from the measured ones for p-induced collisions. This difference is attributed to a collective flow.Comment: 33 pages 15 figures, accepted in Nucl. Phys.

    Measurement of the W boson mass

    Get PDF
    We present a measurement of the W boson mass in W -> ev decays using 1 fb^-1 of data collected with the D0 detector during Run II of the Fermilab Tevatron collider. With a sample of 499830 W -> ev candidate events, we measure M_W = 80.401 +- 0.043 GeV. This is the most precise measurement from a single experiment.Comment: As published in PR

    Measurement of the lifetime of the B_c meson in the semileptonic decay channel

    Get PDF
    Using approximately 1.3 fb-1 of data collected by the D0 detector between 2002 and 2006, we measure the lifetime of the B_c meson in the B_c -> J/psi mu nu X final state. A simultaneous unbinned likelihood fit to the J/\psi+mu invariant mass and lifetime distributions yields a signal of 881 +/- 80 (stat) candidates and a lifetime measurement of \tau(B_c) = 0.448 +0.038 -0.036 (stat) +/- 0.032 (syst) ps.Comment: 7 pages, 2 figures, submitted to Phys. Rev. Let

    Search for the Higgs boson in lepton, tau and jets final states

    Get PDF
    We present a search for the standard model Higgs boson in final states with an electron or muon and a hadronically decaying tau lepton in association with two or more jets using 9.7 fb^{-1} of Run II Fermilab Tevatron Collider data collected with the D0 detector. The analysis is sensitive to Higgs boson production via gluon fusion, associated vector boson production, and vector boson fusion, followed by the Higgs boson decay to tau lepton pairs or to W boson pairs. The ratios of 95% C.L. upper limits on the cross section times branching ratio to those predicted by the standard model are obtained for orthogonal subsamples that are enriched in either H -> tau tau decays or H -> WW decays, and for the combination of these subsample limits. The observed and expected limit ratios for the combined subsamples at a Higgs boson mass of 125 GeV are 11.3 and 9.0 respectively

    Measurement of the electron charge asymmetry in ppbar->W+X->enu+X events at sqrt{s}=1.96 TeV

    Get PDF
    We present a measurement of the electron charge asymmetry in ppbar->W+X->enu+X events at a center of mass energy of 1.96 TeV using 0.75 fb-1 of data collected with the D0 detector at the Fermilab Tevatron Collider. The asymmetry is measured as a function of the electron transverse momentum and pseudorapidity in the interval (-3.2, 3.2) and is compared with expectations from next-to-leading order calculations in perturbative quantum chromodynamics. These measurements will allow more accurate determinations of the proton parton distribution functions.Comment: 7 pages, 3 figures, Fermilab-Pub-08/249-E, submitted to Phys. Rev. Let

    Search for a Narrow ttbar Resonance in ppbar Collisions at sqrt{s}=1.96 TeV

    Get PDF
    We report a search for a narrow ttbar resonance that decays into a lepton+jets final state based on an integrated luminosity of 5.3/fb of proton-antiproton collisions at sqrt{s}=1.96 TeV collected by the D0 Collaboration at the Fermilab Tevatron Collider. We set upper limits on the production cross section of such a resonance multiplied by its branching fraction to ttbar which we compare to predictions for a leptophobic topcolor Z' boson. We exclude such a resonance at the 95% confidence level for masses below 835 GeV.Comment: 7 pages, 3 figures, submitted to Physical Review Letter
    corecore