4,650 research outputs found

    High water availability increases the negative impact of a native hemiparasite on its non-native host

    Get PDF
    Environmental factors alter the impacts of parasitic plants on their hosts. However, there have been no controlled studies on how water availability modulates stem hemiparasites' effects on hosts. A glasshouse experiment was conducted to investigate the association between the Australian native stem hemiparasite Cassytha pubescens and the introduced host Ulex europaeus under high (HW) and low (LW) water supply. Cassytha pubescens had a significant, negative effect on the total biomass of U. europaeus, which was more severe in HW than LW. Regardless of watering treatment, infection significantly decreased shoot and root biomass, nodule biomass, nodule biomass per unit root biomass, F-v/F-m, and nitrogen concentration of U. europaeus. Host spine sodium concentration significantly increased in response to infection in LW but not HW conditions. Host water potential was significantly higher in HW than in LW, which may have allowed the parasite to maintain higher stomatal conductances in HW. In support of this, the delta C-13 of the parasite was significantly lower in HW than in LW (and significantly higher than the host). C. pubescens also had significantly higher F-v/F-m and 66% higher biomass per unit host in the HW compared with the LW treatment. The data suggest that the enhanced performance of C. pubescens in HW resulted in higher parasite growth rates and thus a larger demand for resources from the host, leading to poorer host performance in HW compared with LW. C. pubescens should more negatively affect U. europaeus growth under wet conditions rather than under dry conditions in the field

    Monte Carlo Hamiltonian of lattice gauge theory

    Full text link
    We discuss how the concept of the Monte Carlo Hamiltonian can be applied to lattice gauge theories.Comment: "Non-Perturbative Quantum Field Theory: Lattice and Beyond", Guangzhou, China 200

    A multichannel passive microwave atmospheric temperature sounding system

    Get PDF
    The development of a small, lightweight, low-power, seven channel passive microwave radiometer system for use on the Defense Meteorological Satellite Program (DMSP) was described. The 50-60 GHz sensor system operates in the region of an intense atmospheric oxygen absorption band to provide atmospheric temperature profiles to 30 kilometer altitudes on a global basis

    Effects of phylogenetic reconstruction method on the robustness of species delimitation using single-locus data

    Get PDF
    1. Coalescent-based species delimitation methods combine population genetic and phylogenetic theory to provide an objective means for delineating evolutionarily significant units of diversity. The Generalized Mixed Yule Coalescent (GMYC) and the Poisson Tree Process (PTP) are methods that use ultrametric (GMYC or PTP) or non-ultrametric (PTP) gene trees as input, intended for use mostly with single-locus data such as DNA barcodes. 2. Here we assess how robust the GMYC and PTP are to different phylogenetic reconstruction and branch smoothing methods. We reconstruct over 400 ultrametric trees using up to 30 different combinations of phylogenetic and smoothing methods and perform over 2,000 separate species delimitation analyses across 16 empirical datasets. We then assess how variable diversity estimates are, in terms of richness and identity, with respect to species delimitation, phylogenetic and smoothing methods. 3. The PTP method generally generates diversity estimates that are more robust to different phylogenetic methods. The GMYC is more sensitive, but provides consistent estimates for BEAST trees. The lower consistency of GMYC estimates is likely a result of differences among gene trees introduced by the smoothing step. Unresolved nodes (real anomalies or methodological artefacts) affect both GMYC and PTP estimates, but have a greater effect on GMYC estimates. Branch smoothing is a difficult step and perhaps an underappreciated source of bias that may be widespread among studies of diversity and diversification. 4. Nevertheless, careful choice of phylogenetic method does produce equivalent PTP and GMYC diversity estimates. We recommend simultaneous use of the PTP model with any model-based gene tree (e.g. RAxML) and GMYC approaches with BEAST trees for obtaining species hypotheses

    Measure of the path integral in lattice gauge theory

    Full text link
    We show how to construct the measure of the path integral in lattice gauge theory. This measure contains a factor beyond the standard Haar measure. Such factor becomes relevant for the calculation of a single transition amplitude (in contrast to the calculation of ratios of amplitudes). Single amplitudes are required for computation of the partition function and the free energy. For U(1) lattice gauge theory, we present a numerical simulation of the transition amplitude comparing the path integral with the evolution in terms of the Hamiltonian, showing good agreement.Comment: 5 pages, 2 figure

    Detection and characterization of a 500 μm dust emissivity excess in the Galactic plane using Herschel/Hi-GAL observations

    Get PDF
    Context. Past and recent observations have revealed unexpected variations in the far-infrared – millimeter (FIR-mm) dust emissivity in the interstellar medium. In the Herschel spectral range, those are often referred to as a 500 μm emission excess. Several dust emission models have been developed to interpret astrophysical data in the FIR-mm domain. However, these are commonly unable to fully reconcile theoretical predictions with observations. In contrast, the recently revised two level system (TLS) model, based on the disordered internal structure of amorphous dust grains, seems to provide a promising way of interpreting existing data. Aims. The newly available Herschel infrared GALactic (Hi-GAL) data, which covers most of the inner Milky Way, offers a unique opportunity to investigate possible variations in the dust emission properties both with wavelength and environment. The goal of our analysis is to constrain the internal structure of the largest dust grains on Galactic scales, in the framework of the TLS model. Methods. By combining the IRIS (Improved Reprocessing of the IRAS Survey) 100 μm with the Hi-GAL 160, 250, 350, and 500 μm data, we model the dust emission spectra in each pixel of the Hi-GAL maps, using both the TLS model and, for comparison, a single modified black-body fit. The effect of temperature mixing along the line of sight is investigated to test the robustness of our results. Results. We find a slight decrease in the dust temperature with distance from the Galactic center, confirming previous results. We also report the detection of a significant 500 μm emissivity excess in the peripheral regions of the plane (35° < |l| < 70°) of about 13–15% of the emissivity, which can reach up to 20% in some HII regions. We present the spatial distributions of the best-fit values for the two main parameters of the TLS model, i.e. the charge correlation length, lc, used to characterize the disordered charge distribution (DCD) part of the model, and the amplitude A of the TLS processes with respect to the DCD effect. These distributions illustrate the variations in the dust properties with environment, in particular the plausible existence of an overall gradient with distance to the Galactic center. A comparison with previous findings in the solar neighborhood shows that the local value of the excess is less than expected from the Galactic gradient observed here

    The molecular complex associated with the Galactic HII region Sh2-90: a possible site of triggered star formation

    Full text link
    We investigate the star formation activity in the molecular complex associated with the Galactic HII region Sh2-90, using radio-continuum maps obtained at 1280 MHz and 610 MHz, Herschel Hi-GAL observations at 70 -- 500 microns, and deep near-infrared observation at JHK bands, along with Spitzer observations. Sh2-90 presents a bubble morphology in the mid-IR (size ~ 0.9 pc x 1.6 pc). Radio observations suggest it is an evolved HII region with an electron density ~ 144 cm^-3, emission measure ~ 6.7 x 10^4 cm^-6 pc and a ionized mass ~ 55 Msun. From Hi-GAL observations it is found that the HII region is part of an elongated extended molecular cloud (size ~ 5.6 pc x 9.7 pc, H_2 column density >= 3 x 10^21 cm^-2 and dust temperature 18 -- 27 K) of total mass >= 1 x 10^4 Msun. We identify the ionizing cluster of Sh2-90, the main exciting star being an O8--O9 V star. Five cold dust clumps (mass ~ 8 -- 95 Msun), four mid-IR blobs around B stars, and a compact HII region are found at the edge of the bubble.The velocity information derived from CO (J=3-2) data cubes suggests that most of them are associated with the Sh2-90 region. 129 YSOs are identified (Class I, Class II, and near-IR excess sources). The majority of the YSOs are low mass (<= 3 Msun) sources and they are distributed mostly in the regions of high column density. Four candidate Class 0/I MYSOs have been found; they will possibly evolve to stars of mass >= 15 Msun. We suggest multi-generation star formation is present in the complex. From the evidences of interaction, the time scales involved and the evolutionary status of stellar/protostellar sources, we argue that the star formation at the immediate border/edges of Sh2-90 might have been triggered by the expanding HII region. However, several young sources in this complex are probably formed by some other processes.Comment: 22 pages, 22 figures, accepted for publication in Astronomy and Astrophysic

    The effect of temperature mixing on the observable (T,beta)-relation of interstellar dust clouds

    Full text link
    Detailed studies of the shape of dust emission spectra are possible thanks to the current instruments capable of observations in several sub-millimetre bands (e.g., Herschel and Planck). However, some controversy remains even on the basic effects resulting from the mixing of temperatures along the line-of-sight. Studies have suggested either a positive or a negative correlation between the colour temperature T_C and the observed spectral index beta_Obs. Our aim is to show that both cases are possible and to determine the factors leading to either behaviour. We start by studying the sum of two or three modified black bodies of different temperature. With radiative transfer modelling, we examine the probability distributions of the dust mass as a function of the physical dust temperature. With these results as a guideline, we examine the (T_C, beta_Obs) relations for different sets of clouds. Even in the case of modified blackbodies at temperatures T_0 and T_0+ Delta T_0, the correlation between T_C and beta_Obs can be either positive or negative. If one compares models where Delta T_0 is varied, the correlation is negative. If the models differ in their mean temperature T_0 rather than in Delta T_0, the correlation remains positive. Radiative transfer models show that externally heated clouds have different mean temperatures but the widths of their temperature distributions are rather similar. Thus, the correlation between T_C and beta_Obs is expected to be positive. The same result applies to clouds illuminated by external radiation fields of different intensity. For internally heated clouds a negative correlation is the more likely alternative. If the signal-to-noise ratio is high, the observed negative correlation could be explained by the temperature dependence of the dust optical properties but that intrinsic dependence could be even steeper than the observed one.Comment: Accepted to A&

    Modeling and predicting the shape of the far-infrared to submillimeter emission in ultra-compact HII regions and cold clumps

    Get PDF
    Dust properties are very likely affected by the environment in which dust grains evolve. For instance, some analyses of cold clumps (7 K- 17 K) indicate that the aggregation process is favored in dense environments. However, studying warm (30 K-40 K) dust emission at long wavelength (λ\lambda>>300 μ\mum) has been limited because it is difficult to combine far infared-to-millimeter (FIR-to-mm) spectral coverage and high angular resolution for observations of warm dust grains. Using Herschel data from 70 to 500 μ\mum, which are part of the Herschel infrared Galactic (Hi-GAL) survey combined with 1.1 mm data from the Bolocam Galactic Plane Survey (BGPS), we compared emission in two types of environments: ultra-compact HII (UCHII) regions, and cold molecular clumps (denoted as cold clumps). With this comparison we tested dust emission models in the FIR-to-mm domain that reproduce emission in the diffuse medium, in these two environments (UCHII regions and cold clumps). We also investigated their ability to predict the dust emission in our Galaxy. We determined the emission spectra in twelve UCHII regions and twelve cold clumps, and derived the dust temperature (T) using the recent two-level system (TLS) model with three sets of parameters and the so-called T-β\beta (temperature-dust emissvity index) phenomenological models, with β\beta set to 1.5, 2 and 2.5. We tested the applicability of the TLS model in warm regions for the first time. This analysis indicates distinct trends in the dust emission between cold and warm environments that are visible through changes in the dust emissivity index. However, with the use of standard parameters, the TLS model is able to reproduce the spectral behavior observed in cold and warm regions, from the change of the dust temperature alone, whereas a T-β\beta model requires β\beta to be known.Comment: Accepted for publication in A&A. 19 pages, 8 figures, 7 table
    corecore